MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6t6e36 Unicode version

Theorem 6t6e36 10395
Description: 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
6t6e36  |-  ( 6  x.  6 )  = ; 3
6

Proof of Theorem 6t6e36
StepHypRef Expression
1 6nn0 10174 . 2  |-  6  e.  NN0
2 5nn0 10173 . 2  |-  5  e.  NN0
3 df-6 9994 . 2  |-  6  =  ( 5  +  1 )
4 6t5e30 10394 . . 3  |-  ( 6  x.  5 )  = ; 3
0
5 3nn0 10171 . . . 4  |-  3  e.  NN0
65dec0u 10329 . . 3  |-  ( 10  x.  3 )  = ; 3
0
74, 6eqtr4i 2410 . 2  |-  ( 6  x.  5 )  =  ( 10  x.  3 )
8 df-dec 10315 . . 3  |- ; 3 6  =  ( ( 10  x.  3 )  +  6 )
98eqcomi 2391 . 2  |-  ( ( 10  x.  3 )  +  6 )  = ; 3
6
101, 2, 3, 7, 94t3lem 10385 1  |-  ( 6  x.  6 )  = ; 3
6
Colors of variables: wff set class
Syntax hints:    = wceq 1649  (class class class)co 6020   0cc0 8923    + caddc 8926    x. cmul 8928   3c3 9982   5c5 9984   6c6 9985   10c10 9989  ;cdc 10314
This theorem is referenced by:  2exp8  13350  2exp16  13351  1259lem2  13378  2503lem2  13384  4001lem1  13387
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-ltxr 9058  df-sub 9225  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-dec 10315
  Copyright terms: Public domain W3C validator