MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  9p1e10 Structured version   Unicode version

Theorem 9p1e10 10110
Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
9p1e10  |-  ( 9  +  1 )  =  10

Proof of Theorem 9p1e10
StepHypRef Expression
1 df-10 10066 . 2  |-  10  =  ( 9  +  1 )
21eqcomi 2440 1  |-  ( 9  +  1 )  =  10
Colors of variables: wff set class
Syntax hints:    = wceq 1652  (class class class)co 6081   1c1 8991    + caddc 8993   9c9 10056   10c10 10057
This theorem is referenced by:  1259lem2  13451  1259lem3  13452  1259lem4  13453  2503lem2  13457  4001lem1  13460  4001lem2  13461  4001lem4  13463
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-cleq 2429  df-10 10066
  Copyright terms: Public domain W3C validator