MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  9p4e13 Structured version   Unicode version

Theorem 9p4e13 10436
Description: 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
9p4e13  |-  ( 9  +  4 )  = ; 1
3

Proof of Theorem 9p4e13
StepHypRef Expression
1 9nn0 10235 . 2  |-  9  e.  NN0
2 3nn0 10229 . 2  |-  3  e.  NN0
3 2nn0 10228 . 2  |-  2  e.  NN0
4 df-4 10050 . 2  |-  4  =  ( 3  +  1 )
5 df-3 10049 . 2  |-  3  =  ( 2  +  1 )
6 9p3e12 10435 . 2  |-  ( 9  +  3 )  = ; 1
2
71, 2, 3, 4, 5, 66p5lem 10421 1  |-  ( 9  +  4 )  = ; 1
3
Colors of variables: wff set class
Syntax hints:    = wceq 1652  (class class class)co 6073   1c1 8981    + caddc 8983   2c2 10039   3c3 10040   4c4 10041   9c9 10046  ;cdc 10372
This theorem is referenced by:  9p5e14  10437  9t7e63  10472  43prm  13434  83prm  13435  163prm  13437  2503lem2  13447  2503lem3  13448  log2ub  20779
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9112  df-mnf 9113  df-ltxr 9115  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-dec 10373
  Copyright terms: Public domain W3C validator