Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  a16g-o Unicode version

Theorem a16g-o 2138
 Description: A generalization of axiom ax-16 2096. Version of a16g 1898 using ax-10o 2091. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
a16g-o
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem a16g-o
StepHypRef Expression
1 aev-o 2134 . 2
2 ax-16 2096 . 2
3 biidd 228 . . . 4
43dral1-o 2106 . . 3
54biimprd 214 . 2
61, 2, 5sylsyld 52 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1530 This theorem is referenced by:  ax11inda2  2151 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-4 2087  ax-5o 2088  ax-6o 2089  ax-10o 2091  ax-12o 2094  ax-16 2096 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535
 Copyright terms: Public domain W3C validator