Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  a16gALTOLD7 Unicode version

Theorem a16gALTOLD7 29698
Description: A generalization of axiom ax-16 2096. Alternate proof of a16gNEW7 29521 that uses df-sb 1639. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
a16gALTOLD7  |-  ( A. x  x  =  y  ->  ( ph  ->  A. z ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem a16gALTOLD7
StepHypRef Expression
1 aevNEW7 29498 . 2  |-  ( A. x  x  =  y  ->  A. z  z  =  x )
2 ax16ALT2OLD7 29697 . 2  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
3 biidd 228 . . . 4  |-  ( A. z  z  =  x  ->  ( ph  <->  ph ) )
43dral1NEW7 29470 . . 3  |-  ( A. z  z  =  x  ->  ( A. z ph  <->  A. x ph ) )
54biimprd 214 . 2  |-  ( A. z  z  =  x  ->  ( A. x ph  ->  A. z ph )
)
61, 2, 5sylsyld 52 1  |-  ( A. x  x  =  y  ->  ( ph  ->  A. z ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-11 1727  ax-12 1878  ax-7v 29419  ax-7OLD7 29632
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639
  Copyright terms: Public domain W3C validator