MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a17d Unicode version

Theorem a17d 1607
Description: ax-17 1606 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders. (Contributed by NM, 1-Mar-2013.)
Assertion
Ref Expression
a17d  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem a17d
StepHypRef Expression
1 ax-17 1606 . 2  |-  ( ps 
->  A. x ps )
21a1i 10 1  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530
This theorem is referenced by:  ax12w  1710  dvelimv  1892  dvelimvNEW7  29439  ax10lem17ALT  29745  ax9lem17  29778
This theorem was proved from axioms:  ax-1 5  ax-mp 8  ax-17 1606
  Copyright terms: Public domain W3C validator