Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  a4im Unicode version

Theorem a4im 1868
 Description: Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The a4im 1868 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
a4im.1
a4im.2
Assertion
Ref Expression
a4im

Proof of Theorem a4im
StepHypRef Expression
1 a4im.1 . 2
2 a4im.2 . . 3
32ax-gen 1536 . 2
4 a4imt 1867 . 2
51, 3, 4mp2an 656 1
 Colors of variables: wff set class Syntax hints:   wi 6  wal 1532  wnf 1539   wceq 1619 This theorem is referenced by:  a4ime  1869  chvar  1879  a4imv  1923 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-9 1684  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1315  df-nf 1540
 Copyright terms: Public domain W3C validator