MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a5i-o Unicode version

Theorem a5i-o 2102
Description: Inference version of ax-5o 2088. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
a5i-o.1  |-  ( A. x ph  ->  ps )
Assertion
Ref Expression
a5i-o  |-  ( A. x ph  ->  A. x ps )

Proof of Theorem a5i-o
StepHypRef Expression
1 hba1-o 2101 . 2  |-  ( A. x ph  ->  A. x A. x ph )
2 a5i-o.1 . 2  |-  ( A. x ph  ->  ps )
31, 2alrimih 1555 1  |-  ( A. x ph  ->  A. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530
This theorem is referenced by:  hbae-o  2105  aev-o  2134  ax10-16  2142  ax11indalem  2149  ax11inda2ALT  2150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-4 2087  ax-5o 2088  ax-6o 2089
  Copyright terms: Public domain W3C validator