MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a6e Structured version   Unicode version

Theorem a6e 1768
Description: Abbreviated version of ax6o 1767. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
a6e  |-  ( E. x A. x ph  ->  ph )

Proof of Theorem a6e
StepHypRef Expression
1 df-ex 1552 . 2  |-  ( E. x A. x ph  <->  -. 
A. x  -.  A. x ph )
2 ax6o 1767 . 2  |-  ( -. 
A. x  -.  A. x ph  ->  ph )
31, 2sylbi 189 1  |-  ( E. x A. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1550   E.wex 1551
This theorem is referenced by:  19.9ht  1793
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-ex 1552
  Copyright terms: Public domain W3C validator