MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou Unicode version

Theorem aaliou 19713
Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 
F in integer coefficients, is not approximable beyond order  N  = deg ( F ) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
aalioulem3.e  |-  ( ph  ->  ( F `  A
)  =  0 )
Assertion
Ref Expression
aaliou  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
Distinct variable groups:    ph, x, p, q    x, A, p, q    x, F, p, q    x, N
Allowed substitution hints:    N( q, p)

Proof of Theorem aaliou
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3  |-  N  =  (deg `  F )
2 aalioulem2.b . . 3  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
3 aalioulem2.c . . 3  |-  ( ph  ->  N  e.  NN )
4 aalioulem2.d . . 3  |-  ( ph  ->  A  e.  RR )
5 aalioulem3.e . . 3  |-  ( ph  ->  ( F `  A
)  =  0 )
61, 2, 3, 4, 5aalioulem6 19712 . 2  |-  ( ph  ->  E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
7 rphalfcl 10373 . . . . 5  |-  ( a  e.  RR+  ->  ( a  /  2 )  e.  RR+ )
87adantl 452 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( a  /  2 )  e.  RR+ )
97ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  2 )  e.  RR+ )
10 nnrp 10358 . . . . . . . . . . . . . 14  |-  ( q  e.  NN  ->  q  e.  RR+ )
1110ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  RR+ )
123nnzd 10111 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ZZ )
1312ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  ZZ )
1411, 13rpexpcld 11263 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  RR+ )
159, 14rpdivcld 10402 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  2 )  /  ( q ^ N ) )  e.  RR+ )
1615rpred 10385 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  2 )  /  ( q ^ N ) )  e.  RR )
17 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR+ )
1817, 14rpdivcld 10402 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR+ )
1918rpred 10385 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR )
204adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  RR+ )  ->  A  e.  RR )
21 znq 10315 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
22 qre 10316 . . . . . . . . . . . . . 14  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
2321, 22syl 15 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  RR )
24 resubcl 9106 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( p  /  q
)  e.  RR )  ->  ( A  -  ( p  /  q
) )  e.  RR )
2520, 23, 24syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  RR )
2625recnd 8856 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  CC )
2726abscld 11913 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR )
2816, 19, 273jca 1132 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
( a  /  2
)  /  ( q ^ N ) )  e.  RR  /\  (
a  /  ( q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  /  q
) ) )  e.  RR ) )
299rpred 10385 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  2 )  e.  RR )
30 rpre 10355 . . . . . . . . . . . . 13  |-  ( a  e.  RR+  ->  a  e.  RR )
3130ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR )
32 rphalflt 10375 . . . . . . . . . . . . 13  |-  ( a  e.  RR+  ->  ( a  /  2 )  < 
a )
3332ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  2 )  < 
a )
3429, 31, 14, 33ltdiv1dd 10438 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  2 )  /  ( q ^ N ) )  < 
( a  /  (
q ^ N ) ) )
3534anim1i 551 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( ( a  / 
2 )  /  (
q ^ N ) )  <  ( a  /  ( q ^ N ) )  /\  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
3635ex 423 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( (
( a  /  2
)  /  ( q ^ N ) )  <  ( a  / 
( q ^ N
) )  /\  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
37 ltletr 8908 . . . . . . . . 9  |-  ( ( ( ( a  / 
2 )  /  (
q ^ N ) )  e.  RR  /\  ( a  /  (
q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( ( ( ( a  /  2 )  /  ( q ^ N ) )  < 
( a  /  (
q ^ N ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( a  /  2
)  /  ( q ^ N ) )  <  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
3828, 36, 37sylsyld 52 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( (
a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
3938orim2d 813 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  -> 
( A  =  ( p  /  q )  \/  ( ( a  /  2 )  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
4039anassrs 629 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  p  e.  ZZ )  /\  q  e.  NN )  ->  ( ( A  =  ( p  / 
q )  \/  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( A  =  ( p  /  q )  \/  ( ( a  / 
2 )  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) )
4140ralimdva 2621 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  p  e.  ZZ )  ->  ( A. q  e.  NN  ( A  =  (
p  /  q )  \/  ( a  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) )  ->  A. q  e.  NN  ( A  =  (
p  /  q )  \/  ( ( a  /  2 )  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
4241ralimdva 2621 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
43 oveq1 5826 . . . . . . . 8  |-  ( x  =  ( a  / 
2 )  ->  (
x  /  ( q ^ N ) )  =  ( ( a  /  2 )  / 
( q ^ N
) ) )
4443breq1d 4033 . . . . . . 7  |-  ( x  =  ( a  / 
2 )  ->  (
( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) )  <->  ( (
a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
4544orbi2d 682 . . . . . 6  |-  ( x  =  ( a  / 
2 )  ->  (
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) )  <-> 
( A  =  ( p  /  q )  \/  ( ( a  /  2 )  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
46452ralbidv 2585 . . . . 5  |-  ( x  =  ( a  / 
2 )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) )  <->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
4746rspcev 2884 . . . 4  |-  ( ( ( a  /  2
)  e.  RR+  /\  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
488, 42, 47ee12an 1353 . . 3  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
4948rexlimdva 2667 . 2  |-  ( ph  ->  ( E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
506, 49mpd 14 1  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   class class class wbr 4023   ` cfv 5220  (class class class)co 5819   RRcr 8731   0cc0 8732    < clt 8862    <_ cle 8863    - cmin 9032    / cdiv 9418   NNcn 9741   2c2 9790   ZZcz 10019   QQcq 10311   RR+crp 10349   ^cexp 11099   abscabs 11714  Polycply 19561  degcdgr 19564
This theorem is referenced by:  aaliou2  19715
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-se 4351  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-isom 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10655  df-ico 10657  df-icc 10658  df-fz 10778  df-fzo 10866  df-fl 10920  df-seq 11042  df-exp 11100  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-rlim 11958  df-sum 12154  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-starv 13218  df-sca 13219  df-vsca 13220  df-tset 13222  df-ple 13223  df-ds 13225  df-hom 13227  df-cco 13228  df-rest 13322  df-topn 13323  df-topgen 13339  df-pt 13340  df-prds 13343  df-xrs 13398  df-0g 13399  df-gsum 13400  df-qtop 13405  df-imas 13406  df-xps 13408  df-mre 13483  df-mrc 13484  df-acs 13486  df-mnd 14362  df-submnd 14411  df-grp 14484  df-minusg 14485  df-mulg 14487  df-subg 14613  df-cntz 14788  df-cmn 15086  df-mgp 15321  df-rng 15335  df-cring 15336  df-ur 15337  df-subrg 15538  df-xmet 16368  df-met 16369  df-bl 16370  df-mopn 16371  df-cnfld 16373  df-top 16631  df-bases 16633  df-topon 16634  df-topsp 16635  df-cld 16751  df-ntr 16752  df-cls 16753  df-nei 16830  df-lp 16863  df-perf 16864  df-cn 16952  df-cnp 16953  df-haus 17038  df-cmp 17109  df-tx 17252  df-hmeo 17441  df-fbas 17515  df-fg 17516  df-fil 17536  df-fm 17628  df-flim 17629  df-flf 17630  df-xms 17880  df-ms 17881  df-tms 17882  df-cncf 18377  df-0p 19020  df-limc 19211  df-dv 19212  df-dvn 19213  df-cpn 19214  df-ply 19565  df-idp 19566  df-coe 19567  df-dgr 19568  df-quot 19666
  Copyright terms: Public domain W3C validator