MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou Unicode version

Theorem aaliou 19681
Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 
F in integer coefficients, is not approximable beyond order  N  = deg ( F ) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
aalioulem3.e  |-  ( ph  ->  ( F `  A
)  =  0 )
Assertion
Ref Expression
aaliou  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
Distinct variable groups:    ph, x, p, q    x, A, p, q    x, F, p, q    x, N
Allowed substitution hints:    N( q, p)

Proof of Theorem aaliou
StepHypRef Expression
1 aalioulem2.a . . 3  |-  N  =  (deg `  F )
2 aalioulem2.b . . 3  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
3 aalioulem2.c . . 3  |-  ( ph  ->  N  e.  NN )
4 aalioulem2.d . . 3  |-  ( ph  ->  A  e.  RR )
5 aalioulem3.e . . 3  |-  ( ph  ->  ( F `  A
)  =  0 )
61, 2, 3, 4, 5aalioulem6 19680 . 2  |-  ( ph  ->  E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
7 rphalfcl 10346 . . . . 5  |-  ( a  e.  RR+  ->  ( a  /  2 )  e.  RR+ )
87adantl 454 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( a  /  2 )  e.  RR+ )
97ad2antlr 710 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  2 )  e.  RR+ )
10 nnrp 10331 . . . . . . . . . . . . . 14  |-  ( q  e.  NN  ->  q  e.  RR+ )
1110ad2antll 712 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  RR+ )
123nnzd 10084 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ZZ )
1312ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  ZZ )
1411, 13rpexpcld 11235 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  RR+ )
159, 14rpdivcld 10375 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  2 )  /  ( q ^ N ) )  e.  RR+ )
1615rpred 10358 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  2 )  /  ( q ^ N ) )  e.  RR )
17 simplr 734 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR+ )
1817, 14rpdivcld 10375 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR+ )
1918rpred 10358 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR )
204adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  RR+ )  ->  A  e.  RR )
21 znq 10288 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
22 qre 10289 . . . . . . . . . . . . . 14  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
2321, 22syl 17 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  RR )
24 resubcl 9079 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( p  /  q
)  e.  RR )  ->  ( A  -  ( p  /  q
) )  e.  RR )
2520, 23, 24syl2an 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  RR )
2625recnd 8829 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  CC )
2726abscld 11884 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR )
2816, 19, 273jca 1137 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
( a  /  2
)  /  ( q ^ N ) )  e.  RR  /\  (
a  /  ( q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  /  q
) ) )  e.  RR ) )
299rpred 10358 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  2 )  e.  RR )
30 rpre 10328 . . . . . . . . . . . . 13  |-  ( a  e.  RR+  ->  a  e.  RR )
3130ad2antlr 710 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR )
32 rphalflt 10348 . . . . . . . . . . . . 13  |-  ( a  e.  RR+  ->  ( a  /  2 )  < 
a )
3332ad2antlr 710 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  2 )  < 
a )
3429, 31, 14, 33ltdiv1dd 10411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  2 )  /  ( q ^ N ) )  < 
( a  /  (
q ^ N ) ) )
3534anim1i 554 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( ( a  / 
2 )  /  (
q ^ N ) )  <  ( a  /  ( q ^ N ) )  /\  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
3635ex 425 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( (
( a  /  2
)  /  ( q ^ N ) )  <  ( a  / 
( q ^ N
) )  /\  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
37 ltletr 8881 . . . . . . . . 9  |-  ( ( ( ( a  / 
2 )  /  (
q ^ N ) )  e.  RR  /\  ( a  /  (
q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( ( ( ( a  /  2 )  /  ( q ^ N ) )  < 
( a  /  (
q ^ N ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( a  /  2
)  /  ( q ^ N ) )  <  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
3828, 36, 37sylsyld 54 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( (
a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
3938orim2d 816 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  -> 
( A  =  ( p  /  q )  \/  ( ( a  /  2 )  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
4039anassrs 632 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  p  e.  ZZ )  /\  q  e.  NN )  ->  ( ( A  =  ( p  / 
q )  \/  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( A  =  ( p  /  q )  \/  ( ( a  / 
2 )  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) )
4140ralimdva 2596 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  p  e.  ZZ )  ->  ( A. q  e.  NN  ( A  =  (
p  /  q )  \/  ( a  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) )  ->  A. q  e.  NN  ( A  =  (
p  /  q )  \/  ( ( a  /  2 )  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
4241ralimdva 2596 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
43 oveq1 5799 . . . . . . . 8  |-  ( x  =  ( a  / 
2 )  ->  (
x  /  ( q ^ N ) )  =  ( ( a  /  2 )  / 
( q ^ N
) ) )
4443breq1d 4007 . . . . . . 7  |-  ( x  =  ( a  / 
2 )  ->  (
( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) )  <->  ( (
a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
4544orbi2d 685 . . . . . 6  |-  ( x  =  ( a  / 
2 )  ->  (
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) )  <-> 
( A  =  ( p  /  q )  \/  ( ( a  /  2 )  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
46452ralbidv 2560 . . . . 5  |-  ( x  =  ( a  / 
2 )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) )  <->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
4746rcla4ev 2859 . . . 4  |-  ( ( ( a  /  2
)  e.  RR+  /\  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
488, 42, 47ee12an 1359 . . 3  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
4948rexlimdva 2642 . 2  |-  ( ph  ->  ( E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
506, 49mpd 16 1  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2518   E.wrex 2519   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   RRcr 8704   0cc0 8705    < clt 8835    <_ cle 8836    - cmin 9005    / cdiv 9391   NNcn 9714   2c2 9763   ZZcz 9992   QQcq 10284   RR+crp 10322   ^cexp 11071   abscabs 11685  Polycply 19529  degcdgr 19532
This theorem is referenced by:  aaliou2  19683
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ioo 10627  df-ico 10629  df-icc 10630  df-fz 10750  df-fzo 10838  df-fl 10892  df-seq 11014  df-exp 11072  df-hash 11305  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-clim 11928  df-rlim 11929  df-sum 12125  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ds 13193  df-hom 13195  df-cco 13196  df-rest 13290  df-topn 13291  df-topgen 13307  df-pt 13308  df-prds 13311  df-xrs 13366  df-0g 13367  df-gsum 13368  df-qtop 13373  df-imas 13374  df-xps 13376  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-submnd 14379  df-grp 14452  df-minusg 14453  df-mulg 14455  df-subg 14581  df-cntz 14756  df-cmn 15054  df-mgp 15289  df-ring 15303  df-cring 15304  df-ur 15305  df-subrg 15506  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-cnfld 16341  df-top 16599  df-bases 16601  df-topon 16602  df-topsp 16603  df-cld 16719  df-ntr 16720  df-cls 16721  df-nei 16798  df-lp 16831  df-perf 16832  df-cn 16920  df-cnp 16921  df-haus 17006  df-cmp 17077  df-tx 17220  df-hmeo 17409  df-fbas 17483  df-fg 17484  df-fil 17504  df-fm 17596  df-flim 17597  df-flf 17598  df-xms 17848  df-ms 17849  df-tms 17850  df-cncf 18345  df-0p 18988  df-limc 19179  df-dv 19180  df-dvn 19181  df-cpn 19182  df-ply 19533  df-idp 19534  df-coe 19535  df-dgr 19536  df-quot 19634
  Copyright terms: Public domain W3C validator