MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem1 Unicode version

Theorem aalioulem1 19714
Description: Lemma for aaliou 19720. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
aalioulem1.a  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem1.b  |-  ( ph  ->  X  e.  ZZ )
aalioulem1.c  |-  ( ph  ->  Y  e.  NN )
Assertion
Ref Expression
aalioulem1  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  e.  ZZ )

Proof of Theorem aalioulem1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 aalioulem1.a . . . . 5  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
2 aalioulem1.b . . . . . . 7  |-  ( ph  ->  X  e.  ZZ )
32zcnd 10120 . . . . . 6  |-  ( ph  ->  X  e.  CC )
4 aalioulem1.c . . . . . . 7  |-  ( ph  ->  Y  e.  NN )
54nncnd 9764 . . . . . 6  |-  ( ph  ->  Y  e.  CC )
64nnne0d 9792 . . . . . 6  |-  ( ph  ->  Y  =/=  0 )
73, 5, 6divcld 9538 . . . . 5  |-  ( ph  ->  ( X  /  Y
)  e.  CC )
8 eqid 2285 . . . . . 6  |-  (coeff `  F )  =  (coeff `  F )
9 eqid 2285 . . . . . 6  |-  (deg `  F )  =  (deg
`  F )
108, 9coeid2 19623 . . . . 5  |-  ( ( F  e.  (Poly `  ZZ )  /\  ( X  /  Y )  e.  CC )  ->  ( F `  ( X  /  Y ) )  = 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) ) )
111, 7, 10syl2anc 642 . . . 4  |-  ( ph  ->  ( F `  ( X  /  Y ) )  =  sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) ) )
1211oveq1d 5875 . . 3  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  =  ( sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) )  x.  ( Y ^ (deg `  F
) ) ) )
13 fzfid 11037 . . . 4  |-  ( ph  ->  ( 0 ... (deg `  F ) )  e. 
Fin )
14 dgrcl 19617 . . . . . 6  |-  ( F  e.  (Poly `  ZZ )  ->  (deg `  F
)  e.  NN0 )
151, 14syl 15 . . . . 5  |-  ( ph  ->  (deg `  F )  e.  NN0 )
165, 15expcld 11247 . . . 4  |-  ( ph  ->  ( Y ^ (deg `  F ) )  e.  CC )
17 0z 10037 . . . . . . . 8  |-  0  e.  ZZ
188coef2 19615 . . . . . . . 8  |-  ( ( F  e.  (Poly `  ZZ )  /\  0  e.  ZZ )  ->  (coeff `  F ) : NN0 --> ZZ )
191, 17, 18sylancl 643 . . . . . . 7  |-  ( ph  ->  (coeff `  F ) : NN0 --> ZZ )
20 elfznn0 10824 . . . . . . 7  |-  ( a  e.  ( 0 ... (deg `  F )
)  ->  a  e.  NN0 )
21 ffvelrn 5665 . . . . . . 7  |-  ( ( (coeff `  F ) : NN0 --> ZZ  /\  a  e.  NN0 )  ->  (
(coeff `  F ) `  a )  e.  ZZ )
2219, 20, 21syl2an 463 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( (coeff `  F ) `  a
)  e.  ZZ )
2322zcnd 10120 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( (coeff `  F ) `  a
)  e.  CC )
24 expcl 11123 . . . . . 6  |-  ( ( ( X  /  Y
)  e.  CC  /\  a  e.  NN0 )  -> 
( ( X  /  Y ) ^ a
)  e.  CC )
257, 20, 24syl2an 463 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( X  /  Y ) ^
a )  e.  CC )
2623, 25mulcld 8857 . . . 4  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  e.  CC )
2713, 16, 26fsummulc1 12249 . . 3  |-  ( ph  ->  ( sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) )  x.  ( Y ^ (deg `  F
) ) )  = 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  x.  ( Y ^
(deg `  F )
) ) )
2812, 27eqtrd 2317 . 2  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  = 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  x.  ( Y ^
(deg `  F )
) ) )
295adantr 451 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  e.  CC )
3015adantr 451 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  (deg `  F
)  e.  NN0 )
3129, 30expcld 11247 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
(deg `  F )
)  e.  CC )
3223, 25, 31mulassd 8860 . . . 4  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( (coeff `  F ) `  a )  x.  (
( X  /  Y
) ^ a ) )  x.  ( Y ^ (deg `  F
) ) )  =  ( ( (coeff `  F ) `  a
)  x.  ( ( ( X  /  Y
) ^ a )  x.  ( Y ^
(deg `  F )
) ) ) )
332adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  X  e.  ZZ )
3433zcnd 10120 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  X  e.  CC )
356adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  =/=  0
)
3620adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  a  e.  NN0 )
3734, 29, 35, 36expdivd 11261 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( X  /  Y ) ^
a )  =  ( ( X ^ a
)  /  ( Y ^ a ) ) )
3837oveq1d 5875 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X  /  Y ) ^ a )  x.  ( Y ^ (deg `  F ) ) )  =  ( ( ( X ^ a )  /  ( Y ^
a ) )  x.  ( Y ^ (deg `  F ) ) ) )
3934, 36expcld 11247 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( X ^
a )  e.  CC )
40 nnexpcl 11118 . . . . . . . . . 10  |-  ( ( Y  e.  NN  /\  a  e.  NN0 )  -> 
( Y ^ a
)  e.  NN )
414, 20, 40syl2an 463 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
a )  e.  NN )
4241nncnd 9764 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
a )  e.  CC )
4341nnne0d 9792 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
a )  =/=  0
)
4439, 42, 31, 43div13d 9562 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X ^ a )  /  ( Y ^
a ) )  x.  ( Y ^ (deg `  F ) ) )  =  ( ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) )  x.  ( X ^ a ) ) )
4538, 44eqtrd 2317 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X  /  Y ) ^ a )  x.  ( Y ^ (deg `  F ) ) )  =  ( ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) )  x.  ( X ^ a ) ) )
46 elfzelz 10800 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... (deg `  F )
)  ->  a  e.  ZZ )
4746adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  a  e.  ZZ )
4830nn0zd 10117 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  (deg `  F
)  e.  ZZ )
4929, 35, 47, 48expsubd 11258 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
( (deg `  F
)  -  a ) )  =  ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) ) )
504adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  e.  NN )
5150nnzd 10118 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  e.  ZZ )
52 fznn0sub 10826 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... (deg `  F )
)  ->  ( (deg `  F )  -  a
)  e.  NN0 )
5352adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( (deg `  F )  -  a
)  e.  NN0 )
54 zexpcl 11120 . . . . . . . . 9  |-  ( ( Y  e.  ZZ  /\  ( (deg `  F )  -  a )  e. 
NN0 )  ->  ( Y ^ ( (deg `  F )  -  a
) )  e.  ZZ )
5551, 53, 54syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
( (deg `  F
)  -  a ) )  e.  ZZ )
5649, 55eqeltrrd 2360 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( Y ^ (deg `  F
) )  /  ( Y ^ a ) )  e.  ZZ )
57 zexpcl 11120 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  a  e.  NN0 )  -> 
( X ^ a
)  e.  ZZ )
582, 20, 57syl2an 463 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( X ^
a )  e.  ZZ )
5956, 58zmulcld 10125 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) )  x.  ( X ^ a ) )  e.  ZZ )
6045, 59eqeltrd 2359 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X  /  Y ) ^ a )  x.  ( Y ^ (deg `  F ) ) )  e.  ZZ )
6122, 60zmulcld 10125 . . . 4  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( (coeff `  F ) `  a
)  x.  ( ( ( X  /  Y
) ^ a )  x.  ( Y ^
(deg `  F )
) ) )  e.  ZZ )
6232, 61eqeltrd 2359 . . 3  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( (coeff `  F ) `  a )  x.  (
( X  /  Y
) ^ a ) )  x.  ( Y ^ (deg `  F
) ) )  e.  ZZ )
6313, 62fsumzcl 12210 . 2  |-  ( ph  -> 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  x.  ( Y ^
(deg `  F )
) )  e.  ZZ )
6428, 63eqeltrd 2359 1  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   -->wf 5253   ` cfv 5257  (class class class)co 5860   CCcc 8737   0cc0 8739    x. cmul 8744    - cmin 9039    / cdiv 9425   NNcn 9748   NN0cn0 9967   ZZcz 10026   ...cfz 10784   ^cexp 11106   sum_csu 12160  Polycply 19568  coeffccoe 19570  degcdgr 19571
This theorem is referenced by:  aalioulem4  19717
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-fz 10785  df-fzo 10873  df-fl 10927  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-rlim 11965  df-sum 12161  df-0p 19027  df-ply 19572  df-coe 19574  df-dgr 19575
  Copyright terms: Public domain W3C validator