MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbid Structured version   Unicode version

Theorem abbid 2551
Description: Equivalent wff's yield equal class abstractions (deduction rule). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
abbid.1  |-  F/ x ph
abbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
abbid  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )

Proof of Theorem abbid
StepHypRef Expression
1 abbid.1 . . 3  |-  F/ x ph
2 abbid.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2alrimi 1782 . 2  |-  ( ph  ->  A. x ( ps  <->  ch ) )
4 abbi 2548 . 2  |-  ( A. x ( ps  <->  ch )  <->  { x  |  ps }  =  { x  |  ch } )
53, 4sylib 190 1  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178   A.wal 1550   F/wnf 1554    = wceq 1653   {cab 2424
This theorem is referenced by:  abbidv  2552  rabeqf  2951  sbcbid  3216  iotain  27596
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431
  Copyright terms: Public domain W3C validator