Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abcdtd Unicode version

Theorem abcdtd 27996
Description: Given (((a and b) and c) and d), there exists a proof for d (Contributed by Jarvin Udandy, 3-Sep-2016.)
Hypothesis
Ref Expression
abcdtd.1  |-  ( ( ( ph  /\  ps )  /\  ch )  /\  th )
Assertion
Ref Expression
abcdtd  |-  th

Proof of Theorem abcdtd
StepHypRef Expression
1 abcdtd.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ch )  /\  th )
2 pm3.22 436 . . 3  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ( th  /\  ( ( ph  /\ 
ps )  /\  ch ) ) )
31, 2ax-mp 8 . 2  |-  ( th 
/\  ( ( ph  /\ 
ps )  /\  ch ) )
4 simpl 443 . 2  |-  ( ( th  /\  ( (
ph  /\  ps )  /\  ch ) )  ->  th )
53, 4ax-mp 8 1  |-  th
Colors of variables: wff set class
Syntax hints:    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator