MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem2 Structured version   Unicode version

Theorem abelthlem2 20338
Description: Lemma for abelth 20347. The peculiar region  S, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing  1. Indeed, except for  1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq  0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
Assertion
Ref Expression
abelthlem2  |-  ( ph  ->  ( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
Distinct variable groups:    z, M    z, A
Allowed substitution hints:    ph( z)    S( z)

Proof of Theorem abelthlem2
StepHypRef Expression
1 abelth.3 . 2  |-  ( ph  ->  M  e.  RR )
2 abelth.4 . 2  |-  ( ph  ->  0  <_  M )
3 ax-1cn 9038 . . . . 5  |-  1  e.  CC
43a1i 11 . . . 4  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
1  e.  CC )
5 0le0 10071 . . . . 5  |-  0  <_  0
6 simpl 444 . . . . . . 7  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  M  e.  RR )
76recnd 9104 . . . . . 6  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  M  e.  CC )
87mul01d 9255 . . . . 5  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
( M  x.  0 )  =  0 )
95, 8syl5breqr 4240 . . . 4  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
0  <_  ( M  x.  0 ) )
10 oveq2 6081 . . . . . . . 8  |-  ( z  =  1  ->  (
1  -  z )  =  ( 1  -  1 ) )
11 1m1e0 10058 . . . . . . . 8  |-  ( 1  -  1 )  =  0
1210, 11syl6eq 2483 . . . . . . 7  |-  ( z  =  1  ->  (
1  -  z )  =  0 )
1312abs00bd 12086 . . . . . 6  |-  ( z  =  1  ->  ( abs `  ( 1  -  z ) )  =  0 )
14 fveq2 5720 . . . . . . . . . 10  |-  ( z  =  1  ->  ( abs `  z )  =  ( abs `  1
) )
15 abs1 12092 . . . . . . . . . 10  |-  ( abs `  1 )  =  1
1614, 15syl6eq 2483 . . . . . . . . 9  |-  ( z  =  1  ->  ( abs `  z )  =  1 )
1716oveq2d 6089 . . . . . . . 8  |-  ( z  =  1  ->  (
1  -  ( abs `  z ) )  =  ( 1  -  1 ) )
1817, 11syl6eq 2483 . . . . . . 7  |-  ( z  =  1  ->  (
1  -  ( abs `  z ) )  =  0 )
1918oveq2d 6089 . . . . . 6  |-  ( z  =  1  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  =  ( M  x.  0 ) )
2013, 19breq12d 4217 . . . . 5  |-  ( z  =  1  ->  (
( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) )  <->  0  <_  ( M  x.  0 ) ) )
21 abelth.5 . . . . 5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
2220, 21elrab2 3086 . . . 4  |-  ( 1  e.  S  <->  ( 1  e.  CC  /\  0  <_  ( M  x.  0 ) ) )
234, 9, 22sylanbrc 646 . . 3  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
1  e.  S )
24 elsn 3821 . . . . . . . . . 10  |-  ( z  e.  { 1 }  <-> 
z  =  1 )
2524necon3bbii 2629 . . . . . . . . 9  |-  ( -.  z  e.  { 1 }  <->  z  =/=  1
)
26 simprll 739 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  z  e.  CC )
27 0cn 9074 . . . . . . . . . . . . . . 15  |-  0  e.  CC
28 eqid 2435 . . . . . . . . . . . . . . . 16  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2928cnmetdval 18795 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  CC  /\  0  e.  CC )  ->  ( z ( abs 
o.  -  ) 0 )  =  ( abs `  ( z  -  0 ) ) )
3026, 27, 29sylancl 644 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z ( abs  o.  -  ) 0 )  =  ( abs `  (
z  -  0 ) ) )
3126subid1d 9390 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z  -  0 )  =  z )
3231fveq2d 5724 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( z  - 
0 ) )  =  ( abs `  z
) )
3330, 32eqtrd 2467 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z ( abs  o.  -  ) 0 )  =  ( abs `  z
) )
34 simprlr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( 1  -  z ) )  <_ 
( M  x.  (
1  -  ( abs `  z ) ) ) )
35 subcl 9295 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( 1  -  z
)  e.  CC )
363, 26, 35sylancr 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  -  z )  e.  CC )
3736abscld 12228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( 1  -  z ) )  e.  RR )
38 simpll 731 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  M  e.  RR )
39 1re 9080 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
4026abscld 12228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  e.  RR )
41 resubcl 9355 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( abs `  z )  e.  RR )  -> 
( 1  -  ( abs `  z ) )  e.  RR )
4239, 40, 41sylancr 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  -  ( abs `  z ) )  e.  RR )
4338, 42remulcld 9106 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  e.  RR )
4437, 43lenltd 9209 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) )  <->  -.  ( M  x.  ( 1  -  ( abs `  z ) ) )  <  ( abs `  ( 1  -  z
) ) ) )
4534, 44mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  -.  ( M  x.  (
1  -  ( abs `  z ) ) )  <  ( abs `  (
1  -  z ) ) )
468adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  0 )  =  0 )
47 simprr 734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  z  =/=  1 )
4847necomd 2681 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  =/=  z )
49 subeq0 9317 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( ( 1  -  z )  =  0  <->  1  =  z ) )
5049necon3bid 2633 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( ( 1  -  z )  =/=  0  <->  1  =/=  z ) )
513, 26, 50sylancr 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( 1  -  z
)  =/=  0  <->  1  =/=  z ) )
5248, 51mpbird 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  -  z )  =/=  0 )
53 absgt0 12118 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  -  z )  e.  CC  ->  (
( 1  -  z
)  =/=  0  <->  0  <  ( abs `  (
1  -  z ) ) ) )
5436, 53syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( 1  -  z
)  =/=  0  <->  0  <  ( abs `  (
1  -  z ) ) ) )
5552, 54mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  <  ( abs `  (
1  -  z ) ) )
5646, 55eqbrtrd 4224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  0 )  <  ( abs `  (
1  -  z ) ) )
57 oveq2 6081 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  =  ( abs `  z
)  ->  ( 1  -  1 )  =  ( 1  -  ( abs `  z ) ) )
5811, 57syl5eqr 2481 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  =  ( abs `  z
)  ->  0  =  ( 1  -  ( abs `  z ) ) )
5958oveq2d 6089 . . . . . . . . . . . . . . . . . 18  |-  ( 1  =  ( abs `  z
)  ->  ( M  x.  0 )  =  ( M  x.  ( 1  -  ( abs `  z
) ) ) )
6059breq1d 4214 . . . . . . . . . . . . . . . . 17  |-  ( 1  =  ( abs `  z
)  ->  ( ( M  x.  0 )  <  ( abs `  (
1  -  z ) )  <->  ( M  x.  ( 1  -  ( abs `  z ) ) )  <  ( abs `  ( 1  -  z
) ) ) )
6156, 60syl5ibcom 212 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  =  ( abs `  z )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  < 
( abs `  (
1  -  z ) ) ) )
6261necon3bd 2635 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( -.  ( M  x.  (
1  -  ( abs `  z ) ) )  <  ( abs `  (
1  -  z ) )  ->  1  =/=  ( abs `  z ) ) )
6345, 62mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  =/=  ( abs `  z
) )
6439a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  e.  RR )
65 resubcl 9355 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( abs `  z
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  z
)  -  1 )  e.  RR )
6640, 39, 65sylancl 644 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  e.  RR )
6715oveq2i 6084 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( abs `  z )  -  ( abs `  1
) )  =  ( ( abs `  z
)  -  1 )
68 abs2dif 12126 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  CC  /\  1  e.  CC )  ->  ( ( abs `  z
)  -  ( abs `  1 ) )  <_  ( abs `  (
z  -  1 ) ) )
6926, 3, 68sylancl 644 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  ( abs `  1 ) )  <_  ( abs `  (
z  -  1 ) ) )
7067, 69syl5eqbrr 4238 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  <_  ( abs `  (
z  -  1 ) ) )
71 abssub 12120 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  e.  CC  /\  1  e.  CC )  ->  ( abs `  (
z  -  1 ) )  =  ( abs `  ( 1  -  z
) ) )
7226, 3, 71sylancl 644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( z  - 
1 ) )  =  ( abs `  (
1  -  z ) ) )
7370, 72breqtrd 4228 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  <_  ( abs `  (
1  -  z ) ) )
7466, 37, 43, 73, 34letrd 9217 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )
7540, 64, 43lesubaddd 9613 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( ( abs `  z
)  -  1 )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) )  <->  ( abs `  z
)  <_  ( ( M  x.  ( 1  -  ( abs `  z
) ) )  +  1 ) ) )
7674, 75mpbid 202 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <_ 
( ( M  x.  ( 1  -  ( abs `  z ) ) )  +  1 ) )
777adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  M  e.  CC )
783a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  e.  CC )
7938, 40remulcld 9106 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( abs `  z ) )  e.  RR )
8079recnd 9104 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( abs `  z ) )  e.  CC )
8177, 78, 80addsubd 9422 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  -  ( M  x.  ( abs `  z
) ) )  =  ( ( M  -  ( M  x.  ( abs `  z ) ) )  +  1 ) )
8240recnd 9104 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  e.  CC )
8377, 78, 82subdid 9479 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  =  ( ( M  x.  1 )  -  ( M  x.  ( abs `  z ) ) ) )
8477mulid1d 9095 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  1 )  =  M )
8584oveq1d 6088 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  1 )  -  ( M  x.  ( abs `  z
) ) )  =  ( M  -  ( M  x.  ( abs `  z ) ) ) )
8683, 85eqtrd 2467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  =  ( M  -  ( M  x.  ( abs `  z ) ) ) )
8786oveq1d 6088 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  (
1  -  ( abs `  z ) ) )  +  1 )  =  ( ( M  -  ( M  x.  ( abs `  z ) ) )  +  1 ) )
8881, 87eqtr4d 2470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  -  ( M  x.  ( abs `  z
) ) )  =  ( ( M  x.  ( 1  -  ( abs `  z ) ) )  +  1 ) )
8976, 88breqtrrd 4230 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <_ 
( ( M  + 
1 )  -  ( M  x.  ( abs `  z ) ) ) )
90 peano2re 9229 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
9138, 90syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  +  1 )  e.  RR )
9279, 40, 91leaddsub2d 9618 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( ( M  x.  ( abs `  z ) )  +  ( abs `  z ) )  <_ 
( M  +  1 )  <->  ( abs `  z
)  <_  ( ( M  +  1 )  -  ( M  x.  ( abs `  z ) ) ) ) )
9389, 92mpbird 224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  ( abs `  z ) )  +  ( abs `  z
) )  <_  ( M  +  1 ) )
9477, 78, 82adddird 9103 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  ( abs `  z ) )  =  ( ( M  x.  ( abs `  z ) )  +  ( 1  x.  ( abs `  z
) ) ) )
9582mulid2d 9096 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  x.  ( abs `  z ) )  =  ( abs `  z
) )
9695oveq2d 6089 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  ( abs `  z ) )  +  ( 1  x.  ( abs `  z
) ) )  =  ( ( M  x.  ( abs `  z ) )  +  ( abs `  z ) ) )
9794, 96eqtrd 2467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  ( abs `  z ) )  =  ( ( M  x.  ( abs `  z ) )  +  ( abs `  z ) ) )
9891recnd 9104 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  +  1 )  e.  CC )
9998mulid1d 9095 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  1 )  =  ( M  + 
1 ) )
10093, 97, 993brtr4d 4234 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  ( abs `  z ) )  <_ 
( ( M  + 
1 )  x.  1 ) )
101 0re 9081 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
102101a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  e.  RR )
103 simplr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  <_  M )
10438ltp1d 9931 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  M  <  ( M  +  1 ) )
105102, 38, 91, 103, 104lelttrd 9218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  <  ( M  +  1 ) )
106 lemul2 9853 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  z
)  e.  RR  /\  1  e.  RR  /\  (
( M  +  1 )  e.  RR  /\  0  <  ( M  + 
1 ) ) )  ->  ( ( abs `  z )  <_  1  <->  ( ( M  +  1 )  x.  ( abs `  z ) )  <_ 
( ( M  + 
1 )  x.  1 ) ) )
10740, 64, 91, 105, 106syl112anc 1188 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  <_  1  <->  ( ( M  +  1 )  x.  ( abs `  z
) )  <_  (
( M  +  1 )  x.  1 ) ) )
108100, 107mpbird 224 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <_ 
1 )
10940, 64, 108leltned 9214 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  <  1  <->  1  =/=  ( abs `  z ) ) )
11063, 109mpbird 224 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <  1 )
11133, 110eqbrtrd 4224 . . . . . . . . . . . 12  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z ( abs  o.  -  ) 0 )  <  1 )
112 cnxmet 18797 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
113 1rp 10606 . . . . . . . . . . . . . . 15  |-  1  e.  RR+
114 rpxr 10609 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
115113, 114ax-mp 8 . . . . . . . . . . . . . 14  |-  1  e.  RR*
116 elbl3 18412 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  1  e.  RR* )  /\  ( 0  e.  CC  /\  z  e.  CC ) )  -> 
( z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( z
( abs  o.  -  )
0 )  <  1
) )
117112, 115, 116mpanl12 664 . . . . . . . . . . . . 13  |-  ( ( 0  e.  CC  /\  z  e.  CC )  ->  ( z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( z
( abs  o.  -  )
0 )  <  1
) )
11827, 26, 117sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( z
( abs  o.  -  )
0 )  <  1
) )
119111, 118mpbird 224 . . . . . . . . . . 11  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
120119expr 599 . . . . . . . . . 10  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) ) )  -> 
( z  =/=  1  ->  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
1211203impb 1149 . . . . . . . . 9  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  (
z  =/=  1  -> 
z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
12225, 121syl5bi 209 . . . . . . . 8  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  ( -.  z  e.  { 1 }  ->  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
123122orrd 368 . . . . . . 7  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  (
z  e.  { 1 }  \/  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
124 elun 3480 . . . . . . 7  |-  ( z  e.  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  <->  ( z  e.  { 1 }  \/  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
125123, 124sylibr 204 . . . . . 6  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  z  e.  ( { 1 }  u.  ( 0 (
ball `  ( abs  o. 
-  ) ) 1 ) ) )
126125rabssdv 3415 . . . . 5  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }  C_  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
12721, 126syl5eqss 3384 . . . 4  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  S  C_  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
128 ssundif 3703 . . . 4  |-  ( S 
C_  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  <->  ( S  \  { 1 } ) 
C_  ( 0 (
ball `  ( abs  o. 
-  ) ) 1 ) )
129127, 128sylib 189 . . 3  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
13023, 129jca 519 . 2  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
1311, 2, 130syl2anc 643 1  |-  ( ph  ->  ( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   {crab 2701    \ cdif 3309    u. cun 3310    C_ wss 3312   {csn 3806   class class class wbr 4204   dom cdm 4870    o. ccom 4874   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8978   RRcr 8979   0cc0 8980   1c1 8981    + caddc 8983    x. cmul 8985   RR*cxr 9109    < clt 9110    <_ cle 9111    - cmin 9281   NN0cn0 10211   RR+crp 10602    seq cseq 11313   abscabs 12029    ~~> cli 12268   * Metcxmt 16676   ballcbl 16678
This theorem is referenced by:  abelthlem3  20339  abelthlem6  20342  abelthlem7  20344  abelthlem8  20345  abelthlem9  20346  abelth  20347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-n0 10212  df-z 10273  df-uz 10479  df-rp 10603  df-xadd 10701  df-seq 11314  df-exp 11373  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-psmet 16684  df-xmet 16685  df-met 16686  df-bl 16687
  Copyright terms: Public domain W3C validator