MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abianfplem Structured version   Unicode version

Theorem abianfplem 6717
Description: Lemma for abianfp 6718. We prove by transfinite induction that if  F has a fixed point  x, then its iterates also equal  x. This lemma is used for the "trivial" direction of the main theorem. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
abianfp.1  |-  A  e. 
_V
abianfp.2  |-  G  =  rec ( ( z  e.  _V  |->  ( F `
 z ) ) ,  x )
Assertion
Ref Expression
abianfplem  |-  ( v  e.  On  ->  (
( F `  x
)  =  x  -> 
( G `  v
)  =  x ) )
Distinct variable groups:    x, v    z, v, F    v, G
Allowed substitution hints:    A( x, z, v)    F( x)    G( x, z)

Proof of Theorem abianfplem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fveq2 5730 . . 3  |-  ( v  =  (/)  ->  ( G `
 v )  =  ( G `  (/) ) )
21eqeq1d 2446 . 2  |-  ( v  =  (/)  ->  ( ( G `  v )  =  x  <->  ( G `  (/) )  =  x ) )
3 fveq2 5730 . . 3  |-  ( v  =  y  ->  ( G `  v )  =  ( G `  y ) )
43eqeq1d 2446 . 2  |-  ( v  =  y  ->  (
( G `  v
)  =  x  <->  ( G `  y )  =  x ) )
5 fveq2 5730 . . 3  |-  ( v  =  suc  y  -> 
( G `  v
)  =  ( G `
 suc  y )
)
65eqeq1d 2446 . 2  |-  ( v  =  suc  y  -> 
( ( G `  v )  =  x  <-> 
( G `  suc  y )  =  x ) )
7 abianfp.2 . . . . 5  |-  G  =  rec ( ( z  e.  _V  |->  ( F `
 z ) ) ,  x )
87fveq1i 5731 . . . 4  |-  ( G `
 (/) )  =  ( rec ( ( z  e.  _V  |->  ( F `
 z ) ) ,  x ) `  (/) )
9 vex 2961 . . . . 5  |-  x  e. 
_V
109rdg0 6681 . . . 4  |-  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  (/) )  =  x
118, 10eqtri 2458 . . 3  |-  ( G `
 (/) )  =  x
1211a1i 11 . 2  |-  ( ( F `  x )  =  x  ->  ( G `  (/) )  =  x )
13 fvex 5744 . . . . 5  |-  ( F `
 ( G `  y ) )  e. 
_V
14 fveq2 5730 . . . . . 6  |-  ( v  =  z  ->  ( F `  v )  =  ( F `  z ) )
15 fveq2 5730 . . . . . 6  |-  ( v  =  ( G `  y )  ->  ( F `  v )  =  ( F `  ( G `  y ) ) )
167, 14, 15rdgsucmpt2 6690 . . . . 5  |-  ( ( y  e.  On  /\  ( F `  ( G `
 y ) )  e.  _V )  -> 
( G `  suc  y )  =  ( F `  ( G `
 y ) ) )
1713, 16mpan2 654 . . . 4  |-  ( y  e.  On  ->  ( G `  suc  y )  =  ( F `  ( G `  y ) ) )
18 fveq2 5730 . . . . 5  |-  ( ( G `  y )  =  x  ->  ( F `  ( G `  y ) )  =  ( F `  x
) )
19 id 21 . . . . 5  |-  ( ( F `  x )  =  x  ->  ( F `  x )  =  x )
2018, 19sylan9eqr 2492 . . . 4  |-  ( ( ( F `  x
)  =  x  /\  ( G `  y )  =  x )  -> 
( F `  ( G `  y )
)  =  x )
2117, 20sylan9eq 2490 . . 3  |-  ( ( y  e.  On  /\  ( ( F `  x )  =  x  /\  ( G `  y )  =  x ) )  ->  ( G `  suc  y )  =  x )
2221exp32 590 . 2  |-  ( y  e.  On  ->  (
( F `  x
)  =  x  -> 
( ( G `  y )  =  x  ->  ( G `  suc  y )  =  x ) ) )
23 vex 2961 . . . . . . . 8  |-  v  e. 
_V
24 rdglim2a 6693 . . . . . . . 8  |-  ( ( v  e.  _V  /\  Lim  v )  ->  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  v
)  =  U_ y  e.  v  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  y
) )
2523, 24mpan 653 . . . . . . 7  |-  ( Lim  v  ->  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  v
)  =  U_ y  e.  v  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  y
) )
267fveq1i 5731 . . . . . . 7  |-  ( G `
 v )  =  ( rec ( ( z  e.  _V  |->  ( F `  z ) ) ,  x ) `
 v )
277fveq1i 5731 . . . . . . . . 9  |-  ( G `
 y )  =  ( rec ( ( z  e.  _V  |->  ( F `  z ) ) ,  x ) `
 y )
2827a1i 11 . . . . . . . 8  |-  ( y  e.  v  ->  ( G `  y )  =  ( rec (
( z  e.  _V  |->  ( F `  z ) ) ,  x ) `
 y ) )
2928iuneq2i 4113 . . . . . . 7  |-  U_ y  e.  v  ( G `  y )  =  U_ y  e.  v  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  y
)
3025, 26, 293eqtr4g 2495 . . . . . 6  |-  ( Lim  v  ->  ( G `  v )  =  U_ y  e.  v  ( G `  y )
)
3130adantr 453 . . . . 5  |-  ( ( Lim  v  /\  A. y  e.  v  ( G `  y )  =  x )  ->  ( G `  v )  =  U_ y  e.  v  ( G `  y
) )
32 iuneq2 4111 . . . . . 6  |-  ( A. y  e.  v  ( G `  y )  =  x  ->  U_ y  e.  v  ( G `  y )  =  U_ y  e.  v  x
)
33 df-lim 4588 . . . . . . . 8  |-  ( Lim  v  <->  ( Ord  v  /\  v  =/=  (/)  /\  v  =  U. v ) )
3433simp2bi 974 . . . . . . 7  |-  ( Lim  v  ->  v  =/=  (/) )
35 iunconst 4103 . . . . . . 7  |-  ( v  =/=  (/)  ->  U_ y  e.  v  x  =  x )
3634, 35syl 16 . . . . . 6  |-  ( Lim  v  ->  U_ y  e.  v  x  =  x )
3732, 36sylan9eqr 2492 . . . . 5  |-  ( ( Lim  v  /\  A. y  e.  v  ( G `  y )  =  x )  ->  U_ y  e.  v  ( G `  y )  =  x )
3831, 37eqtrd 2470 . . . 4  |-  ( ( Lim  v  /\  A. y  e.  v  ( G `  y )  =  x )  ->  ( G `  v )  =  x )
3938ex 425 . . 3  |-  ( Lim  v  ->  ( A. y  e.  v  ( G `  y )  =  x  ->  ( G `
 v )  =  x ) )
4039a1d 24 . 2  |-  ( Lim  v  ->  ( ( F `  x )  =  x  ->  ( A. y  e.  v  ( G `  y )  =  x  ->  ( G `
 v )  =  x ) ) )
412, 4, 6, 12, 22, 40tfinds2 4845 1  |-  ( v  e.  On  ->  (
( F `  x
)  =  x  -> 
( G `  v
)  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   _Vcvv 2958   (/)c0 3630   U.cuni 4017   U_ciun 4095    e. cmpt 4268   Ord word 4582   Oncon0 4583   Lim wlim 4584   suc csuc 4585   ` cfv 5456   reccrdg 6669
This theorem is referenced by:  abianfp  6718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-recs 6635  df-rdg 6670
  Copyright terms: Public domain W3C validator