MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abianfplem Unicode version

Theorem abianfplem 6486
Description: Lemma for abianfp 6487. We prove by transfinite induction that if  F has a fixed point  x, then its iterates also equal  x. This lemma is used for the "trivial" direction of the main theorem. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
abianfp.1  |-  A  e. 
_V
abianfp.2  |-  G  =  rec ( ( z  e.  _V  |->  ( F `
 z ) ) ,  x )
Assertion
Ref Expression
abianfplem  |-  ( v  e.  On  ->  (
( F `  x
)  =  x  -> 
( G `  v
)  =  x ) )
Distinct variable groups:    x, v    z, v, F    v, G
Allowed substitution hints:    A( x, z, v)    F( x)    G( x, z)

Proof of Theorem abianfplem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . 3  |-  ( v  =  (/)  ->  ( G `
 v )  =  ( G `  (/) ) )
21eqeq1d 2304 . 2  |-  ( v  =  (/)  ->  ( ( G `  v )  =  x  <->  ( G `  (/) )  =  x ) )
3 fveq2 5541 . . 3  |-  ( v  =  y  ->  ( G `  v )  =  ( G `  y ) )
43eqeq1d 2304 . 2  |-  ( v  =  y  ->  (
( G `  v
)  =  x  <->  ( G `  y )  =  x ) )
5 fveq2 5541 . . 3  |-  ( v  =  suc  y  -> 
( G `  v
)  =  ( G `
 suc  y )
)
65eqeq1d 2304 . 2  |-  ( v  =  suc  y  -> 
( ( G `  v )  =  x  <-> 
( G `  suc  y )  =  x ) )
7 abianfp.2 . . . . 5  |-  G  =  rec ( ( z  e.  _V  |->  ( F `
 z ) ) ,  x )
87fveq1i 5542 . . . 4  |-  ( G `
 (/) )  =  ( rec ( ( z  e.  _V  |->  ( F `
 z ) ) ,  x ) `  (/) )
9 vex 2804 . . . . 5  |-  x  e. 
_V
109rdg0 6450 . . . 4  |-  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  (/) )  =  x
118, 10eqtri 2316 . . 3  |-  ( G `
 (/) )  =  x
1211a1i 10 . 2  |-  ( ( F `  x )  =  x  ->  ( G `  (/) )  =  x )
13 fvex 5555 . . . . 5  |-  ( F `
 ( G `  y ) )  e. 
_V
14 fveq2 5541 . . . . . 6  |-  ( v  =  z  ->  ( F `  v )  =  ( F `  z ) )
15 fveq2 5541 . . . . . 6  |-  ( v  =  ( G `  y )  ->  ( F `  v )  =  ( F `  ( G `  y ) ) )
167, 14, 15rdgsucmpt2 6459 . . . . 5  |-  ( ( y  e.  On  /\  ( F `  ( G `
 y ) )  e.  _V )  -> 
( G `  suc  y )  =  ( F `  ( G `
 y ) ) )
1713, 16mpan2 652 . . . 4  |-  ( y  e.  On  ->  ( G `  suc  y )  =  ( F `  ( G `  y ) ) )
18 fveq2 5541 . . . . 5  |-  ( ( G `  y )  =  x  ->  ( F `  ( G `  y ) )  =  ( F `  x
) )
19 id 19 . . . . 5  |-  ( ( F `  x )  =  x  ->  ( F `  x )  =  x )
2018, 19sylan9eqr 2350 . . . 4  |-  ( ( ( F `  x
)  =  x  /\  ( G `  y )  =  x )  -> 
( F `  ( G `  y )
)  =  x )
2117, 20sylan9eq 2348 . . 3  |-  ( ( y  e.  On  /\  ( ( F `  x )  =  x  /\  ( G `  y )  =  x ) )  ->  ( G `  suc  y )  =  x )
2221exp32 588 . 2  |-  ( y  e.  On  ->  (
( F `  x
)  =  x  -> 
( ( G `  y )  =  x  ->  ( G `  suc  y )  =  x ) ) )
23 vex 2804 . . . . . . . 8  |-  v  e. 
_V
24 rdglim2a 6462 . . . . . . . 8  |-  ( ( v  e.  _V  /\  Lim  v )  ->  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  v
)  =  U_ y  e.  v  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  y
) )
2523, 24mpan 651 . . . . . . 7  |-  ( Lim  v  ->  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  v
)  =  U_ y  e.  v  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  y
) )
267fveq1i 5542 . . . . . . 7  |-  ( G `
 v )  =  ( rec ( ( z  e.  _V  |->  ( F `  z ) ) ,  x ) `
 v )
277fveq1i 5542 . . . . . . . . 9  |-  ( G `
 y )  =  ( rec ( ( z  e.  _V  |->  ( F `  z ) ) ,  x ) `
 y )
2827a1i 10 . . . . . . . 8  |-  ( y  e.  v  ->  ( G `  y )  =  ( rec (
( z  e.  _V  |->  ( F `  z ) ) ,  x ) `
 y ) )
2928iuneq2i 3939 . . . . . . 7  |-  U_ y  e.  v  ( G `  y )  =  U_ y  e.  v  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  y
)
3025, 26, 293eqtr4g 2353 . . . . . 6  |-  ( Lim  v  ->  ( G `  v )  =  U_ y  e.  v  ( G `  y )
)
3130adantr 451 . . . . 5  |-  ( ( Lim  v  /\  A. y  e.  v  ( G `  y )  =  x )  ->  ( G `  v )  =  U_ y  e.  v  ( G `  y
) )
32 iuneq2 3937 . . . . . 6  |-  ( A. y  e.  v  ( G `  y )  =  x  ->  U_ y  e.  v  ( G `  y )  =  U_ y  e.  v  x
)
33 df-lim 4413 . . . . . . . 8  |-  ( Lim  v  <->  ( Ord  v  /\  v  =/=  (/)  /\  v  =  U. v ) )
3433simp2bi 971 . . . . . . 7  |-  ( Lim  v  ->  v  =/=  (/) )
35 iunconst 3929 . . . . . . 7  |-  ( v  =/=  (/)  ->  U_ y  e.  v  x  =  x )
3634, 35syl 15 . . . . . 6  |-  ( Lim  v  ->  U_ y  e.  v  x  =  x )
3732, 36sylan9eqr 2350 . . . . 5  |-  ( ( Lim  v  /\  A. y  e.  v  ( G `  y )  =  x )  ->  U_ y  e.  v  ( G `  y )  =  x )
3831, 37eqtrd 2328 . . . 4  |-  ( ( Lim  v  /\  A. y  e.  v  ( G `  y )  =  x )  ->  ( G `  v )  =  x )
3938ex 423 . . 3  |-  ( Lim  v  ->  ( A. y  e.  v  ( G `  y )  =  x  ->  ( G `
 v )  =  x ) )
4039a1d 22 . 2  |-  ( Lim  v  ->  ( ( F `  x )  =  x  ->  ( A. y  e.  v  ( G `  y )  =  x  ->  ( G `
 v )  =  x ) ) )
412, 4, 6, 12, 22, 40tfinds2 4670 1  |-  ( v  e.  On  ->  (
( F `  x
)  =  x  -> 
( G `  v
)  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801   (/)c0 3468   U.cuni 3843   U_ciun 3921    e. cmpt 4093   Ord word 4407   Oncon0 4408   Lim wlim 4409   suc csuc 4410   ` cfv 5271   reccrdg 6438
This theorem is referenced by:  abianfp  6487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439
  Copyright terms: Public domain W3C validator