Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abid2f Structured version   Unicode version

Theorem abid2f 2599
 Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
abid2f.1
Assertion
Ref Expression
abid2f

Proof of Theorem abid2f
StepHypRef Expression
1 abid2f.1 . . . . 5
2 nfab1 2576 . . . . 5
31, 2cleqf 2598 . . . 4
4 abid 2426 . . . . . 6
54bibi2i 306 . . . . 5
65albii 1576 . . . 4
73, 6bitri 242 . . 3
8 biid 229 . . 3
97, 8mpgbir 1560 . 2
109eqcomi 2442 1
 Colors of variables: wff set class Syntax hints:   wb 178  wal 1550   wceq 1653   wcel 1726  cab 2424  wnfc 2561 This theorem is referenced by:  mptctf  24114  rabexgf  27673 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563
 Copyright terms: Public domain W3C validator