MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abladdsub4 Structured version   Unicode version

Theorem abladdsub4 15438
Description: Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
abladdsub4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  =  ( Z 
.+  W )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )

Proof of Theorem abladdsub4
StepHypRef Expression
1 ablgrp 15417 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
213ad2ant1 978 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Grp )
3 simp2l 983 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  X  e.  B )
4 simp2r 984 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Y  e.  B )
5 ablsubadd.b . . . . 5  |-  B  =  ( Base `  G
)
6 ablsubadd.p . . . . 5  |-  .+  =  ( +g  `  G )
75, 6grpcl 14818 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
82, 3, 4, 7syl3anc 1184 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .+  Y )  e.  B )
9 simp3l 985 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Z  e.  B )
10 simp3r 986 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  W  e.  B )
115, 6grpcl 14818 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  W  e.  B )  ->  ( Z  .+  W
)  e.  B )
122, 9, 10, 11syl3anc 1184 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .+  W )  e.  B )
135, 6grpcl 14818 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z  .+  Y
)  e.  B )
142, 9, 4, 13syl3anc 1184 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .+  Y )  e.  B )
15 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
165, 15grpsubrcan 14870 . . 3  |-  ( ( G  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  ( Z  .+  W
)  e.  B  /\  ( Z  .+  Y )  e.  B ) )  ->  ( ( ( X  .+  Y ) 
.-  ( Z  .+  Y ) )  =  ( ( Z  .+  W )  .-  ( Z  .+  Y ) )  <-> 
( X  .+  Y
)  =  ( Z 
.+  W ) ) )
172, 8, 12, 14, 16syl13anc 1186 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( ( X  .+  Y )  .-  ( Z  .+  Y ) )  =  ( ( Z 
.+  W )  .-  ( Z  .+  Y ) )  <->  ( X  .+  Y )  =  ( Z  .+  W ) ) )
18 simp1 957 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Abel )
195, 6, 15ablsub4 15437 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  Y ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  Y ) ) )
2018, 3, 4, 9, 4, 19syl122anc 1193 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  Y ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  Y ) ) )
21 eqid 2436 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
225, 21, 15grpsubid 14873 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .-  Y
)  =  ( 0g
`  G ) )
232, 4, 22syl2anc 643 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Y  .-  Y )  =  ( 0g `  G
) )
2423oveq2d 6097 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .-  Z
)  .+  ( Y  .-  Y ) )  =  ( ( X  .-  Z )  .+  ( 0g `  G ) ) )
255, 15grpsubcl 14869 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .-  Z
)  e.  B )
262, 3, 9, 25syl3anc 1184 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .-  Z )  e.  B )
275, 6, 21grprid 14836 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  .-  Z )  e.  B )  -> 
( ( X  .-  Z )  .+  ( 0g `  G ) )  =  ( X  .-  Z ) )
282, 26, 27syl2anc 643 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .-  Z
)  .+  ( 0g `  G ) )  =  ( X  .-  Z
) )
2920, 24, 283eqtrd 2472 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  Y ) )  =  ( X  .-  Z
) )
305, 6, 15ablsub4 15437 . . . . 5  |-  ( ( G  e.  Abel  /\  ( Z  e.  B  /\  W  e.  B )  /\  ( Z  e.  B  /\  Y  e.  B
) )  ->  (
( Z  .+  W
)  .-  ( Z  .+  Y ) )  =  ( ( Z  .-  Z )  .+  ( W  .-  Y ) ) )
3118, 9, 10, 9, 4, 30syl122anc 1193 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( Z  .+  W
)  .-  ( Z  .+  Y ) )  =  ( ( Z  .-  Z )  .+  ( W  .-  Y ) ) )
325, 21, 15grpsubid 14873 . . . . . 6  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( Z  .-  Z
)  =  ( 0g
`  G ) )
332, 9, 32syl2anc 643 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .-  Z )  =  ( 0g `  G
) )
3433oveq1d 6096 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( Z  .-  Z
)  .+  ( W  .-  Y ) )  =  ( ( 0g `  G )  .+  ( W  .-  Y ) ) )
355, 15grpsubcl 14869 . . . . . 6  |-  ( ( G  e.  Grp  /\  W  e.  B  /\  Y  e.  B )  ->  ( W  .-  Y
)  e.  B )
362, 10, 4, 35syl3anc 1184 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( W  .-  Y )  e.  B )
375, 6, 21grplid 14835 . . . . 5  |-  ( ( G  e.  Grp  /\  ( W  .-  Y )  e.  B )  -> 
( ( 0g `  G )  .+  ( W  .-  Y ) )  =  ( W  .-  Y ) )
382, 36, 37syl2anc 643 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( 0g `  G
)  .+  ( W  .-  Y ) )  =  ( W  .-  Y
) )
3931, 34, 383eqtrd 2472 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( Z  .+  W
)  .-  ( Z  .+  Y ) )  =  ( W  .-  Y
) )
4029, 39eqeq12d 2450 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( ( X  .+  Y )  .-  ( Z  .+  Y ) )  =  ( ( Z 
.+  W )  .-  ( Z  .+  Y ) )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )
4117, 40bitr3d 247 1  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  =  ( Z 
.+  W )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5454  (class class class)co 6081   Basecbs 13469   +g cplusg 13529   0gc0g 13723   Grpcgrp 14685   -gcsg 14688   Abelcabel 15413
This theorem is referenced by:  lmodvaddsub4  15996
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-0g 13727  df-mnd 14690  df-grp 14812  df-minusg 14813  df-sbg 14814  df-cmn 15414  df-abl 15415
  Copyright terms: Public domain W3C validator