MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1lem Structured version   Unicode version

Theorem ablfac1lem 15616
Description: Lemma for ablfac1b 15618. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b  |-  B  =  ( Base `  G
)
ablfac1.o  |-  O  =  ( od `  G
)
ablfac1.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac1.g  |-  ( ph  ->  G  e.  Abel )
ablfac1.f  |-  ( ph  ->  B  e.  Fin )
ablfac1.1  |-  ( ph  ->  A  C_  Prime )
ablfac1.m  |-  M  =  ( P ^ ( P  pCnt  ( # `  B
) ) )
ablfac1.n  |-  N  =  ( ( # `  B
)  /  M )
Assertion
Ref Expression
ablfac1lem  |-  ( (
ph  /\  P  e.  A )  ->  (
( M  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  N )  =  1  /\  ( # `  B
)  =  ( M  x.  N ) ) )
Distinct variable groups:    x, p, B    ph, p, x    A, p, x    O, p, x    P, p, x    G, p, x
Allowed substitution hints:    S( x, p)    M( x, p)    N( x, p)

Proof of Theorem ablfac1lem
StepHypRef Expression
1 ablfac1.m . . . 4  |-  M  =  ( P ^ ( P  pCnt  ( # `  B
) ) )
2 ablfac1.1 . . . . . . 7  |-  ( ph  ->  A  C_  Prime )
32sselda 3340 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  Prime )
4 prmnn 13072 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
53, 4syl 16 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  NN )
6 ablfac1.g . . . . . . . . 9  |-  ( ph  ->  G  e.  Abel )
7 ablgrp 15407 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
8 ablfac1.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
98grpbn0 14824 . . . . . . . . 9  |-  ( G  e.  Grp  ->  B  =/=  (/) )
106, 7, 93syl 19 . . . . . . . 8  |-  ( ph  ->  B  =/=  (/) )
11 ablfac1.f . . . . . . . . 9  |-  ( ph  ->  B  e.  Fin )
12 hashnncl 11635 . . . . . . . . 9  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
1311, 12syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
1410, 13mpbird 224 . . . . . . 7  |-  ( ph  ->  ( # `  B
)  e.  NN )
1514adantr 452 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  e.  NN )
163, 15pccld 13214 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( P  pCnt  ( # `  B
) )  e.  NN0 )
175, 16nnexpcld 11534 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  e.  NN )
181, 17syl5eqel 2519 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  M  e.  NN )
19 ablfac1.n . . . 4  |-  N  =  ( ( # `  B
)  /  M )
20 pcdvds 13227 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( # `
 B )  e.  NN )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  ||  ( # `
 B ) )
213, 15, 20syl2anc 643 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  ||  ( # `
 B ) )
221, 21syl5eqbr 4237 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  M  ||  ( # `  B
) )
23 nndivdvds 12848 . . . . . 6  |-  ( ( ( # `  B
)  e.  NN  /\  M  e.  NN )  ->  ( M  ||  ( # `
 B )  <->  ( ( # `
 B )  /  M )  e.  NN ) )
2415, 18, 23syl2anc 643 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( M  ||  ( # `  B
)  <->  ( ( # `  B )  /  M
)  e.  NN ) )
2522, 24mpbid 202 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  (
( # `  B )  /  M )  e.  NN )
2619, 25syl5eqel 2519 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  N  e.  NN )
2718, 26jca 519 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( M  e.  NN  /\  N  e.  NN ) )
281oveq1i 6083 . . 3  |-  ( M  gcd  N )  =  ( ( P ^
( P  pCnt  ( # `
 B ) ) )  gcd  N )
29 pcndvds2 13231 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( # `
 B )  e.  NN )  ->  -.  P  ||  ( ( # `  B )  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )
303, 15, 29syl2anc 643 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  -.  P  ||  ( ( # `  B )  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )
311oveq2i 6084 . . . . . . . 8  |-  ( (
# `  B )  /  M )  =  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) )
3219, 31eqtri 2455 . . . . . . 7  |-  N  =  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) )
3332breq2i 4212 . . . . . 6  |-  ( P 
||  N  <->  P  ||  (
( # `  B )  /  ( P ^
( P  pCnt  ( # `
 B ) ) ) ) )
3430, 33sylnibr 297 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  -.  P  ||  N )
3526nnzd 10364 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  N  e.  ZZ )
36 coprm 13090 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
373, 35, 36syl2anc 643 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
3834, 37mpbid 202 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( P  gcd  N )  =  1 )
39 prmz 13073 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
403, 39syl 16 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  ZZ )
41 rpexp1i 13111 . . . . 5  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ  /\  ( P  pCnt  ( # `  B
) )  e.  NN0 )  ->  ( ( P  gcd  N )  =  1  ->  ( ( P ^ ( P  pCnt  (
# `  B )
) )  gcd  N
)  =  1 ) )
4240, 35, 16, 41syl3anc 1184 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  (
( P  gcd  N
)  =  1  -> 
( ( P ^
( P  pCnt  ( # `
 B ) ) )  gcd  N )  =  1 ) )
4338, 42mpd 15 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  (
( P ^ ( P  pCnt  ( # `  B
) ) )  gcd 
N )  =  1 )
4428, 43syl5eq 2479 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( M  gcd  N )  =  1 )
4519oveq2i 6084 . . 3  |-  ( M  x.  N )  =  ( M  x.  (
( # `  B )  /  M ) )
4615nncnd 10006 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  e.  CC )
4718nncnd 10006 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  M  e.  CC )
4818nnne0d 10034 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  M  =/=  0 )
4946, 47, 48divcan2d 9782 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  ( M  x.  ( ( # `
 B )  /  M ) )  =  ( # `  B
) )
5045, 49syl5req 2480 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  =  ( M  x.  N
) )
5127, 44, 503jca 1134 1  |-  ( (
ph  /\  P  e.  A )  ->  (
( M  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  N )  =  1  /\  ( # `  B
)  =  ( M  x.  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   {crab 2701    C_ wss 3312   (/)c0 3620   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   Fincfn 7101   1c1 8981    x. cmul 8985    / cdiv 9667   NNcn 9990   NN0cn0 10211   ZZcz 10272   ^cexp 11372   #chash 11608    || cdivides 12842    gcd cgcd 12996   Primecprime 13069    pCnt cpc 13200   Basecbs 13459   Grpcgrp 14675   odcod 15153   Abelcabel 15403
This theorem is referenced by:  ablfac1a  15617  ablfac1b  15618
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-card 7816  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-n0 10212  df-z 10273  df-uz 10479  df-q 10565  df-rp 10603  df-fz 11034  df-fl 11192  df-mod 11241  df-seq 11314  df-exp 11373  df-hash 11609  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-dvds 12843  df-gcd 12997  df-prm 13070  df-pc 13201  df-0g 13717  df-mnd 14680  df-grp 14802  df-abl 15405
  Copyright terms: Public domain W3C validator