MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac2 Unicode version

Theorem ablfac2 15340
Description: Choose generators for each cyclic group in ablfac 15339. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
ablfac.b  |-  B  =  ( Base `  G
)
ablfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
ablfac.1  |-  ( ph  ->  G  e.  Abel )
ablfac.2  |-  ( ph  ->  B  e.  Fin )
ablfac2.m  |-  .x.  =  (.g
`  G )
ablfac2.s  |-  S  =  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `  k
) ) ) )
Assertion
Ref Expression
ablfac2  |-  ( ph  ->  E. w  e. Word  B
( S : dom  w
--> C  /\  G dom DProd  S  /\  ( G DProd  S
)  =  B ) )
Distinct variable groups:    S, r    k, n, r, w, B    .x. , k, w    C, k, n, w    ph, k, n, w    k, G, n, r, w
Allowed substitution hints:    ph( r)    C( r)    S( w, k, n)    .x. ( n, r)

Proof of Theorem ablfac2
Dummy variables  s  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablfac.b . . 3  |-  B  =  ( Base `  G
)
2 ablfac.c . . 3  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
3 ablfac.1 . . 3  |-  ( ph  ->  G  e.  Abel )
4 ablfac.2 . . 3  |-  ( ph  ->  B  e.  Fin )
51, 2, 3, 4ablfac 15339 . 2  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
6 wrdf 11435 . . . . . . . . . 10  |-  ( s  e. Word  C  ->  s : ( 0..^ (
# `  s )
) --> C )
76ad2antlr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  s : ( 0..^ (
# `  s )
) --> C )
8 fdm 5409 . . . . . . . . 9  |-  ( s : ( 0..^ (
# `  s )
) --> C  ->  dom  s  =  ( 0..^ ( # `  s
) ) )
97, 8syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  dom  s  =  ( 0..^ ( # `  s
) ) )
10 fzofi 11052 . . . . . . . 8  |-  ( 0..^ ( # `  s
) )  e.  Fin
119, 10syl6eqel 2384 . . . . . . 7  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  dom  s  e.  Fin )
129feq2d 5396 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  (
s : dom  s --> C 
<->  s : ( 0..^ ( # `  s
) ) --> C ) )
137, 12mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  s : dom  s --> C )
14 ffvelrn 5679 . . . . . . . . . . . 12  |-  ( ( s : dom  s --> C  /\  k  e.  dom  s )  ->  (
s `  k )  e.  C )
1513, 14sylan 457 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( s `  k )  e.  C
)
16 oveq2 5882 . . . . . . . . . . . . . 14  |-  ( r  =  ( s `  k )  ->  ( Gs  r )  =  ( Gs  ( s `  k
) ) )
1716eleq1d 2362 . . . . . . . . . . . . 13  |-  ( r  =  ( s `  k )  ->  (
( Gs  r )  e.  (CycGrp  i^i  ran pGrp  )  <->  ( Gs  (
s `  k )
)  e.  (CycGrp  i^i  ran pGrp  ) ) )
1817, 2elrab2 2938 . . . . . . . . . . . 12  |-  ( ( s `  k )  e.  C  <->  ( (
s `  k )  e.  (SubGrp `  G )  /\  ( Gs  ( s `  k ) )  e.  (CycGrp  i^i  ran pGrp  ) ) )
1918simplbi 446 . . . . . . . . . . 11  |-  ( ( s `  k )  e.  C  ->  (
s `  k )  e.  (SubGrp `  G )
)
2015, 19syl 15 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( s `  k )  e.  (SubGrp `  G ) )
211subgss 14638 . . . . . . . . . 10  |-  ( ( s `  k )  e.  (SubGrp `  G
)  ->  ( s `  k )  C_  B
)
2220, 21syl 15 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( s `  k )  C_  B
)
23 inss1 3402 . . . . . . . . . . . . 13  |-  (CycGrp  i^i  ran pGrp  )  C_ CycGrp
2418simprbi 450 . . . . . . . . . . . . . 14  |-  ( ( s `  k )  e.  C  ->  ( Gs  ( s `  k
) )  e.  (CycGrp 
i^i  ran pGrp  ) )
2515, 24syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( Gs  ( s `
 k ) )  e.  (CycGrp  i^i  ran pGrp  ) )
2623, 25sseldi 3191 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( Gs  ( s `
 k ) )  e. CycGrp )
27 eqid 2296 . . . . . . . . . . . . . 14  |-  ( Base `  ( Gs  ( s `  k ) ) )  =  ( Base `  ( Gs  ( s `  k
) ) )
28 eqid 2296 . . . . . . . . . . . . . 14  |-  (.g `  ( Gs  ( s `  k
) ) )  =  (.g `  ( Gs  ( s `
 k ) ) )
2927, 28iscyg 15182 . . . . . . . . . . . . 13  |-  ( ( Gs  ( s `  k
) )  e. CycGrp  <->  ( ( Gs  ( s `  k
) )  e.  Grp  /\ 
E. x  e.  (
Base `  ( Gs  (
s `  k )
) ) ran  (
n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `
 k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) ) )
3029simprbi 450 . . . . . . . . . . . 12  |-  ( ( Gs  ( s `  k
) )  e. CycGrp  ->  E. x  e.  ( Base `  ( Gs  ( s `  k ) ) ) ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) )
3126, 30syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  E. x  e.  (
Base `  ( Gs  (
s `  k )
) ) ran  (
n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `
 k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) )
32 eqid 2296 . . . . . . . . . . . . . 14  |-  ( Gs  ( s `  k ) )  =  ( Gs  ( s `  k ) )
3332subgbas 14641 . . . . . . . . . . . . 13  |-  ( ( s `  k )  e.  (SubGrp `  G
)  ->  ( s `  k )  =  (
Base `  ( Gs  (
s `  k )
) ) )
3420, 33syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( s `  k )  =  (
Base `  ( Gs  (
s `  k )
) ) )
3534rexeqdv 2756 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( E. x  e.  ( s `  k
) ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) )  <->  E. x  e.  ( Base `  ( Gs  ( s `  k
) ) ) ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k
) ) ) x ) )  =  (
Base `  ( Gs  (
s `  k )
) ) ) )
3631, 35mpbird 223 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  E. x  e.  ( s `  k ) ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) )
3720ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  /\  x  e.  ( s `  k ) )  /\  n  e.  ZZ )  ->  ( s `  k
)  e.  (SubGrp `  G ) )
38 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  /\  x  e.  ( s `  k ) )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
39 simplr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  /\  x  e.  ( s `  k ) )  /\  n  e.  ZZ )  ->  x  e.  ( s `
 k ) )
40 ablfac2.m . . . . . . . . . . . . . . . 16  |-  .x.  =  (.g
`  G )
4140, 32, 28subgmulg 14651 . . . . . . . . . . . . . . 15  |-  ( ( ( s `  k
)  e.  (SubGrp `  G )  /\  n  e.  ZZ  /\  x  e.  ( s `  k
) )  ->  (
n  .x.  x )  =  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )
4237, 38, 39, 41syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  /\  x  e.  ( s `  k ) )  /\  n  e.  ZZ )  ->  ( n  .x.  x
)  =  ( n (.g `  ( Gs  ( s `
 k ) ) ) x ) )
4342mpteq2dva 4122 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  k  e. 
dom  s )  /\  x  e.  ( s `  k ) )  -> 
( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `
 k ) ) ) x ) ) )
4443rneqd 4922 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  k  e. 
dom  s )  /\  x  e.  ( s `  k ) )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ran  (
n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `
 k ) ) ) x ) ) )
4534adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  k  e. 
dom  s )  /\  x  e.  ( s `  k ) )  -> 
( s `  k
)  =  ( Base `  ( Gs  ( s `  k ) ) ) )
4644, 45eqeq12d 2310 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  k  e. 
dom  s )  /\  x  e.  ( s `  k ) )  -> 
( ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `  k
)  <->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) ) )
4746rexbidva 2573 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( E. x  e.  ( s `  k
) ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `  k
)  <->  E. x  e.  ( s `  k ) ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) ) )
4836, 47mpbird 223 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  E. x  e.  ( s `  k ) ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `  k
) )
49 ssrexv 3251 . . . . . . . . 9  |-  ( ( s `  k ) 
C_  B  ->  ( E. x  e.  (
s `  k ) ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `
 k )  ->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `
 k ) ) )
5022, 48, 49sylc 56 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `
 k ) )
5150ralrimiva 2639 . . . . . . 7  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  A. k  e.  dom  s E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n 
.x.  x ) )  =  ( s `  k ) )
52 oveq2 5882 . . . . . . . . . . 11  |-  ( x  =  ( w `  k )  ->  (
n  .x.  x )  =  ( n  .x.  ( w `  k
) ) )
5352mpteq2dv 4123 . . . . . . . . . 10  |-  ( x  =  ( w `  k )  ->  (
n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( n  e.  ZZ  |->  ( n 
.x.  ( w `  k ) ) ) )
5453rneqd 4922 . . . . . . . . 9  |-  ( x  =  ( w `  k )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) ) )
5554eqeq1d 2304 . . . . . . . 8  |-  ( x  =  ( w `  k )  ->  ( ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `
 k )  <->  ran  ( n  e.  ZZ  |->  ( n 
.x.  ( w `  k ) ) )  =  ( s `  k ) ) )
5655ac6sfi 7117 . . . . . . 7  |-  ( ( dom  s  e.  Fin  /\ 
A. k  e.  dom  s E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `
 k ) )  ->  E. w ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )
5711, 51, 56syl2anc 642 . . . . . 6  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  E. w
( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )
58 simprl 732 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  w : dom  s --> B )
599adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  dom  s  =  ( 0..^ ( # `  s ) ) )
6059feq2d 5396 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( w : dom  s --> B  <->  w :
( 0..^ ( # `  s ) ) --> B ) )
6158, 60mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  w :
( 0..^ ( # `  s ) ) --> B )
62 iswrdi 11433 . . . . . . . . . 10  |-  ( w : ( 0..^ (
# `  s )
) --> B  ->  w  e. Word  B )
6361, 62syl 15 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  w  e. Word  B )
64 fdm 5409 . . . . . . . . . . . . . . . 16  |-  ( w : ( 0..^ (
# `  s )
) --> B  ->  dom  w  =  ( 0..^ ( # `  s
) ) )
6561, 64syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  dom  w  =  ( 0..^ ( # `  s ) ) )
6665, 59eqtr4d 2331 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  dom  w  =  dom  s )
6766eleq2d 2363 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( j  e.  dom  w  <->  j  e.  dom  s ) )
6867biimpa 470 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  /\  j  e. 
dom  w )  -> 
j  e.  dom  s
)
69 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) )
70 simpl 443 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  =  j  /\  n  e.  ZZ )  ->  k  =  j )
7170fveq2d 5545 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  =  j  /\  n  e.  ZZ )  ->  ( w `  k
)  =  ( w `
 j ) )
7271oveq2d 5890 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  =  j  /\  n  e.  ZZ )  ->  ( n  .x.  (
w `  k )
)  =  ( n 
.x.  ( w `  j ) ) )
7372mpteq2dva 4122 . . . . . . . . . . . . . . . . 17  |-  ( k  =  j  ->  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( n  e.  ZZ  |->  ( n 
.x.  ( w `  j ) ) ) )
7473rneqd 4922 . . . . . . . . . . . . . . . 16  |-  ( k  =  j  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) ) )
75 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( k  =  j  ->  (
s `  k )  =  ( s `  j ) )
7674, 75eqeq12d 2310 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  ( ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k )  <->  ran  ( n  e.  ZZ  |->  ( n 
.x.  ( w `  j ) ) )  =  ( s `  j ) ) )
7776rspccva 2896 . . . . . . . . . . . . . 14  |-  ( ( A. k  e.  dom  s ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `  k
) ) )  =  ( s `  k
)  /\  j  e.  dom  s )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) )  =  ( s `
 j ) )
7869, 77sylan 457 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  /\  j  e. 
dom  s )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) )  =  ( s `
 j ) )
7913adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  s : dom  s --> C )
80 ffvelrn 5679 . . . . . . . . . . . . . 14  |-  ( ( s : dom  s --> C  /\  j  e.  dom  s )  ->  (
s `  j )  e.  C )
8179, 80sylan 457 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  /\  j  e. 
dom  s )  -> 
( s `  j
)  e.  C )
8278, 81eqeltrd 2370 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  /\  j  e. 
dom  s )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) )  e.  C )
8368, 82syldan 456 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  /\  j  e. 
dom  w )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) )  e.  C )
84 ablfac2.s . . . . . . . . . . . 12  |-  S  =  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `  k
) ) ) )
85 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( k  =  j  ->  (
w `  k )  =  ( w `  j ) )
8685oveq2d 5890 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
n  .x.  ( w `  k ) )  =  ( n  .x.  (
w `  j )
) )
8786mpteq2dv 4123 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( n  e.  ZZ  |->  ( n 
.x.  ( w `  j ) ) ) )
8887rneqd 4922 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) ) )
8988cbvmptv 4127 . . . . . . . . . . . 12  |-  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) ) )  =  ( j  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `  j
) ) ) )
9084, 89eqtri 2316 . . . . . . . . . . 11  |-  S  =  ( j  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `  j
) ) ) )
9183, 90fmptd 5700 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  S : dom  w --> C )
92 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  G dom DProd  s )
9392adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  G dom DProd  s )
9466raleqdv 2755 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( A. k  e.  dom  w ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k )  <->  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )
9569, 94mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  A. k  e.  dom  w ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) )
96 mpteq12 4115 . . . . . . . . . . . . . 14  |-  ( ( dom  w  =  dom  s  /\  A. k  e. 
dom  w ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) )  ->  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) ) )  =  ( k  e.  dom  s  |->  ( s `  k
) ) )
9766, 95, 96syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( k  e.  dom  w  |->  ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) ) )  =  ( k  e.  dom  s  |->  ( s `  k
) ) )
9884, 97syl5eq 2340 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  S  =  ( k  e.  dom  s  |->  ( s `  k ) ) )
99 dprdf 15257 . . . . . . . . . . . . . 14  |-  ( G dom DProd  s  ->  s : dom  s --> (SubGrp `  G ) )
10093, 99syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  s : dom  s --> (SubGrp `  G )
)
101100feqmptd 5591 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  s  =  ( k  e.  dom  s  |->  ( s `  k ) ) )
10298, 101eqtr4d 2331 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  S  =  s )
10393, 102breqtrrd 4065 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  G dom DProd  S )
104102oveq2d 5890 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( G DProd  S )  =  ( G DProd 
s ) )
105 simplrr 737 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( G DProd  s )  =  B )
106104, 105eqtrd 2328 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( G DProd  S )  =  B )
10791, 103, 1063jca 1132 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd  S )  =  B ) )
10863, 107jca 518 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( w  e. Word  B  /\  ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd  S )  =  B ) ) )
109108ex 423 . . . . . . 7  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  (
( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) )  ->  ( w  e. Word  B  /\  ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd 
S )  =  B ) ) ) )
110109eximdv 1612 . . . . . 6  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  ( E. w ( w : dom  s --> B  /\  A. k  e.  dom  s ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) )  ->  E. w ( w  e. Word  B  /\  ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd  S )  =  B ) ) ) )
11157, 110mpd 14 . . . . 5  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  E. w
( w  e. Word  B  /\  ( S : dom  w
--> C  /\  G dom DProd  S  /\  ( G DProd  S
)  =  B ) ) )
112 df-rex 2562 . . . . 5  |-  ( E. w  e. Word  B ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd  S )  =  B )  <->  E. w
( w  e. Word  B  /\  ( S : dom  w
--> C  /\  G dom DProd  S  /\  ( G DProd  S
)  =  B ) ) )
113111, 112sylibr 203 . . . 4  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  E. w  e. Word  B ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd 
S )  =  B ) )
114113ex 423 . . 3  |-  ( (
ph  /\  s  e. Word  C )  ->  ( ( G dom DProd  s  /\  ( G DProd  s )  =  B )  ->  E. w  e. Word  B ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd 
S )  =  B ) ) )
115114rexlimdva 2680 . 2  |-  ( ph  ->  ( E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  B )  ->  E. w  e. Word  B
( S : dom  w
--> C  /\  G dom DProd  S  /\  ( G DProd  S
)  =  B ) ) )
1165, 115mpd 14 1  |-  ( ph  ->  E. w  e. Word  B
( S : dom  w
--> C  /\  G dom DProd  S  /\  ( G DProd  S
)  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   {crab 2560    i^i cin 3164    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   ran crn 4706   -->wf 5267   ` cfv 5271  (class class class)co 5874   Fincfn 6879   0cc0 8753   ZZcz 10040  ..^cfzo 10886   #chash 11353  Word cword 11419   Basecbs 13164   ↾s cress 13165   Grpcgrp 14378  .gcmg 14382  SubGrpcsubg 14631   pGrp cpgp 14858   Abelcabel 15106  CycGrpccyg 15180   DProd cdprd 15247
This theorem is referenced by:  dchrpt  20522
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-rpss 6293  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-word 11425  df-concat 11426  df-s1 11427  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-gsum 13421  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-eqg 14636  df-ghm 14697  df-gim 14739  df-ga 14760  df-cntz 14809  df-oppg 14835  df-od 14860  df-gex 14861  df-pgp 14862  df-lsm 14963  df-pj1 14964  df-cmn 15107  df-abl 15108  df-cyg 15181  df-dprd 15249
  Copyright terms: Public domain W3C validator