MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablo4 Structured version   Unicode version

Theorem ablo4 21877
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablcom.1  |-  X  =  ran  G
Assertion
Ref Expression
ablo4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )

Proof of Theorem ablo4
StepHypRef Expression
1 simprll 740 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  A  e.  X
)
2 simprlr 741 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  B  e.  X
)
3 simprrl 742 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  C  e.  X
)
41, 2, 33jca 1135 . . . . 5  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )
5 ablcom.1 . . . . . 6  |-  X  =  ran  G
65ablo32 21876 . . . . 5  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) G C )  =  ( ( A G C ) G B ) )
74, 6syldan 458 . . . 4  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B ) G C )  =  ( ( A G C ) G B ) )
87oveq1d 6098 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( ( A G C ) G B ) G D ) )
9 ablogrpo 21874 . . . 4  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
105grpocl 21790 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
11103expb 1155 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A G B )  e.  X
)
1211adantrr 699 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A G B )  e.  X
)
13 simprrl 742 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  C  e.  X
)
14 simprrr 743 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  D  e.  X
)
1512, 13, 143jca 1135 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B )  e.  X  /\  C  e.  X  /\  D  e.  X ) )
165grpoass 21793 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A G B )  e.  X  /\  C  e.  X  /\  D  e.  X )
)  ->  ( (
( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
1715, 16syldan 458 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
189, 17sylan 459 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
195grpocl 21790 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A G C )  e.  X )
20193expb 1155 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( A G C )  e.  X
)
2120adantrlr 705 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )  -> 
( A G C )  e.  X )
2221adantrrr 707 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A G C )  e.  X
)
23 simprlr 741 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  B  e.  X
)
2422, 23, 143jca 1135 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G C )  e.  X  /\  B  e.  X  /\  D  e.  X ) )
255grpoass 21793 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A G C )  e.  X  /\  B  e.  X  /\  D  e.  X )
)  ->  ( (
( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
2624, 25syldan 458 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
279, 26sylan 459 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
288, 18, 273eqtr3d 2478 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )
29283impb 1150 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   ran crn 4881  (class class class)co 6083   GrpOpcgr 21776   AbelOpcablo 21871
This theorem is referenced by:  gxdi  21886  rngoa4  21985  vca4  22044  nvadd4  22108  ipdirilem  22332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fo 5462  df-fv 5464  df-ov 6086  df-grpo 21781  df-ablo 21872
  Copyright terms: Public domain W3C validator