MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodiv32 Structured version   Unicode version

Theorem ablodiv32 21918
Description: Swap the second and third terms in a double division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1  |-  X  =  ran  G
abldiv.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablodiv32  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( ( A D C ) D B ) )

Proof of Theorem ablodiv32
StepHypRef Expression
1 abldiv.1 . . . . 5  |-  X  =  ran  G
21ablocom 21911 . . . 4  |-  ( ( G  e.  AbelOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B G C )  =  ( C G B ) )
323adant3r1 1163 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B G C )  =  ( C G B ) )
43oveq2d 6133 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B G C ) )  =  ( A D ( C G B ) ) )
5 abldiv.3 . . 3  |-  D  =  (  /g  `  G
)
61, 5ablodivdiv4 21917 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( A D ( B G C ) ) )
7 3ancomb 946 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  <->  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)
81, 5ablodivdiv4 21917 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( ( A D C ) D B )  =  ( A D ( C G B ) ) )
97, 8sylan2b 463 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C ) D B )  =  ( A D ( C G B ) ) )
104, 6, 93eqtr4d 2485 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( ( A D C ) D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1654    e. wcel 1728   ran crn 4914   ` cfv 5489  (class class class)co 6117    /g cgs 21815   AbelOpcablo 21907
This theorem is referenced by:  ablonnncan1  21921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-id 4533  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-riota 6585  df-grpo 21817  df-gid 21818  df-ginv 21819  df-gdiv 21820  df-ablo 21908
  Copyright terms: Public domain W3C validator