MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablomul Structured version   Unicode version

Theorem ablomul 21945
Description: Nonzero complex number multiplication is an Abelian group operation. (Contributed by Steve Rodriguez, 12-Feb-2007.) (New usage is discouraged.)
Assertion
Ref Expression
ablomul  |-  (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) )  e.  AbelOp

Proof of Theorem ablomul
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 9073 . . . 4  |-  CC  e.  _V
2 difexg 4353 . . . 4  |-  ( CC  e.  _V  ->  ( CC  \  { 0 } )  e.  _V )
31, 2ax-mp 8 . . 3  |-  ( CC 
\  { 0 } )  e.  _V
4 mulnzcnopr 9670 . . 3  |-  (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) : ( ( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) --> ( CC  \  {
0 } )
5 ovres 6215 . . . . . . . 8  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) y )  =  ( x  x.  y ) )
6 eldifsn 3929 . . . . . . . . . 10  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
7 eldifsn 3929 . . . . . . . . . 10  |-  ( y  e.  ( CC  \  { 0 } )  <-> 
( y  e.  CC  /\  y  =/=  0 ) )
8 mulcl 9076 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
98ad2ant2r 729 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( x  x.  y
)  e.  CC )
10 mulne0 9666 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( x  x.  y
)  =/=  0 )
119, 10jca 520 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( ( x  x.  y )  e.  CC  /\  ( x  x.  y
)  =/=  0 ) )
126, 7, 11syl2anb 467 . . . . . . . . 9  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( ( x  x.  y )  e.  CC  /\  ( x  x.  y )  =/=  0 ) )
13 eldifsn 3929 . . . . . . . . 9  |-  ( ( x  x.  y )  e.  ( CC  \  { 0 } )  <-> 
( ( x  x.  y )  e.  CC  /\  ( x  x.  y
)  =/=  0 ) )
1412, 13sylibr 205 . . . . . . . 8  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x  x.  y )  e.  ( CC  \  { 0 } ) )
155, 14eqeltrd 2512 . . . . . . 7  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) y )  e.  ( CC 
\  { 0 } ) )
1615anim1i 553 . . . . . 6  |-  ( ( ( x  e.  ( CC  \  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) y )  e.  ( CC 
\  { 0 } )  /\  z  e.  ( CC  \  {
0 } ) ) )
17163impa 1149 . . . . 5  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( (
x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) y )  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) ) )
18 ovres 6215 . . . . 5  |-  ( ( ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) y )  e.  ( CC  \  { 0 } )  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) y ) (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) z )  =  ( ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) y )  x.  z ) )
1917, 18syl 16 . . . 4  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( (
x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) y ) (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) z )  =  ( ( x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) y )  x.  z ) )
2053adant3 978 . . . . 5  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( x
(  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) y )  =  ( x  x.  y
) )
2120oveq1d 6098 . . . 4  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( (
x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) y )  x.  z )  =  ( ( x  x.  y
)  x.  z ) )
22 eldifi 3471 . . . . . 6  |-  ( x  e.  ( CC  \  { 0 } )  ->  x  e.  CC )
23 eldifi 3471 . . . . . 6  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  e.  CC )
24 eldifi 3471 . . . . . 6  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  e.  CC )
25 mulass 9080 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
2622, 23, 24, 25syl3an 1227 . . . . 5  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( (
x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) ) )
27 ovres 6215 . . . . . . . 8  |-  ( ( y  e.  ( CC 
\  { 0 } )  /\  z  e.  ( CC  \  {
0 } ) )  ->  ( y (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) z )  =  ( y  x.  z ) )
2827eqcomd 2443 . . . . . . 7  |-  ( ( y  e.  ( CC 
\  { 0 } )  /\  z  e.  ( CC  \  {
0 } ) )  ->  ( y  x.  z )  =  ( y (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) z ) )
29283adant1 976 . . . . . 6  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( y  x.  z )  =  ( y (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) z ) )
3029oveq2d 6099 . . . . 5  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( x  x.  ( y  x.  z
) )  =  ( x  x.  ( y (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) z ) ) )
314fovcl 6177 . . . . . . . . 9  |-  ( ( y  e.  ( CC 
\  { 0 } )  /\  z  e.  ( CC  \  {
0 } ) )  ->  ( y (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) z )  e.  ( CC 
\  { 0 } ) )
3227, 31eqeltrrd 2513 . . . . . . . 8  |-  ( ( y  e.  ( CC 
\  { 0 } )  /\  z  e.  ( CC  \  {
0 } ) )  ->  ( y  x.  z )  e.  ( CC  \  { 0 } ) )
33 ovres 6215 . . . . . . . . 9  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  ( y  x.  z )  e.  ( CC  \  {
0 } ) )  ->  ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) ( y  x.  z ) )  =  ( x  x.  ( y  x.  z ) ) )
3433eqcomd 2443 . . . . . . . 8  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  ( y  x.  z )  e.  ( CC  \  {
0 } ) )  ->  ( x  x.  ( y  x.  z
) )  =  ( x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) ( y  x.  z ) ) )
3532, 34sylan2 462 . . . . . . 7  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  ( y  e.  ( CC  \  { 0 } )  /\  z  e.  ( CC  \  { 0 } ) ) )  ->  ( x  x.  ( y  x.  z
) )  =  ( x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) ( y  x.  z ) ) )
36353impb 1150 . . . . . 6  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( x  x.  ( y  x.  z
) )  =  ( x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) ( y  x.  z ) ) )
3729oveq2d 6099 . . . . . 6  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( x
(  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) ( y  x.  z ) )  =  ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) ( y (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) z ) ) )
3836, 30, 373eqtr3d 2478 . . . . 5  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( x  x.  ( y (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) z ) )  =  ( x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) ( y (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) z ) ) )
3926, 30, 383eqtrd 2474 . . . 4  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( (
x  x.  y )  x.  z )  =  ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) ( y (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) z ) ) )
4019, 21, 393eqtrd 2474 . . 3  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } )  /\  z  e.  ( CC  \  { 0 } ) )  ->  ( (
x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) y ) (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) z )  =  ( x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) ( y (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) z ) ) )
41 ax-1cn 9050 . . . 4  |-  1  e.  CC
42 ax-1ne0 9061 . . . 4  |-  1  =/=  0
43 eldifsn 3929 . . . 4  |-  ( 1  e.  ( CC  \  { 0 } )  <-> 
( 1  e.  CC  /\  1  =/=  0 ) )
4441, 42, 43mpbir2an 888 . . 3  |-  1  e.  ( CC  \  {
0 } )
45 ovres 6215 . . . . 5  |-  ( ( 1  e.  ( CC 
\  { 0 } )  /\  x  e.  ( CC  \  {
0 } ) )  ->  ( 1 (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) x )  =  ( 1  x.  x ) )
4644, 45mpan 653 . . . 4  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( 1 (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) x )  =  ( 1  x.  x ) )
4722mulid2d 9108 . . . 4  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( 1  x.  x )  =  x )
4846, 47eqtrd 2470 . . 3  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( 1 (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) x )  =  x )
49 reccl 9687 . . . . . 6  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( 1  /  x
)  e.  CC )
50 recne0 9693 . . . . . 6  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( 1  /  x
)  =/=  0 )
5149, 50jca 520 . . . . 5  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( ( 1  /  x )  e.  CC  /\  ( 1  /  x
)  =/=  0 ) )
526, 51sylbi 189 . . . 4  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( ( 1  /  x )  e.  CC  /\  ( 1  /  x )  =/=  0 ) )
53 eldifsn 3929 . . . 4  |-  ( ( 1  /  x )  e.  ( CC  \  { 0 } )  <-> 
( ( 1  /  x )  e.  CC  /\  ( 1  /  x
)  =/=  0 ) )
5452, 53sylibr 205 . . 3  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( 1  /  x )  e.  ( CC  \  { 0 } ) )
55 ovres 6215 . . . . 5  |-  ( ( ( 1  /  x
)  e.  ( CC 
\  { 0 } )  /\  x  e.  ( CC  \  {
0 } ) )  ->  ( ( 1  /  x ) (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) x )  =  ( ( 1  /  x )  x.  x ) )
5654, 55mpancom 652 . . . 4  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( ( 1  /  x ) (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) x )  =  ( ( 1  /  x )  x.  x ) )
57 recid2 9695 . . . . 5  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( ( 1  /  x )  x.  x
)  =  1 )
586, 57sylbi 189 . . . 4  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( ( 1  /  x )  x.  x )  =  1 )
5956, 58eqtrd 2470 . . 3  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( ( 1  /  x ) (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) x )  =  1 )
603, 4, 40, 44, 48, 54, 59isgrpoi 21788 . 2  |-  (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) )  e.  GrpOp
614fdmi 5598 . 2  |-  dom  (  x.  |`  ( ( CC 
\  { 0 } )  X.  ( CC 
\  { 0 } ) ) )  =  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) )
62 mulcom 9078 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  =  ( y  x.  x ) )
6322, 23, 62syl2an 465 . . 3  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x  x.  y )  =  ( y  x.  x ) )
64 ovres 6215 . . . 4  |-  ( ( y  e.  ( CC 
\  { 0 } )  /\  x  e.  ( CC  \  {
0 } ) )  ->  ( y (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) x )  =  ( y  x.  x ) )
6564ancoms 441 . . 3  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( y (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) x )  =  ( y  x.  x ) )
6663, 5, 653eqtr4d 2480 . 2  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) y )  =  ( y (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) x ) )
6760, 61, 66isabloi 21878 1  |-  (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) )  e.  AbelOp
Colors of variables: wff set class
Syntax hints:    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   _Vcvv 2958    \ cdif 3319   {csn 3816    X. cxp 4878    |` cres 4882  (class class class)co 6083   CCcc 8990   0cc0 8992   1c1 8993    x. cmul 8997    / cdiv 9679   AbelOpcablo 21871
This theorem is referenced by:  mulid  21946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-po 4505  df-so 4506  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-riota 6551  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-grpo 21781  df-ablo 21872
  Copyright terms: Public domain W3C validator