MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablonnncan Structured version   Unicode version

Theorem ablonnncan 21881
Description: Cancellation law for group division. (nnncan 9336 analog.) (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1  |-  X  =  ran  G
abldiv.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablonnncan  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D ( B D C ) ) D C )  =  ( A D B ) )

Proof of Theorem ablonnncan
StepHypRef Expression
1 simpr1 963 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
2 ablogrpo 21872 . . . . . 6  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
3 abldiv.1 . . . . . . 7  |-  X  =  ran  G
4 abldiv.3 . . . . . . 7  |-  D  =  (  /g  `  G
)
53, 4grpodivcl 21835 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B D C )  e.  X )
62, 5syl3an1 1217 . . . . 5  |-  ( ( G  e.  AbelOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B D C )  e.  X )
763adant3r1 1162 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  e.  X
)
8 simpr3 965 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
91, 7, 83jca 1134 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A  e.  X  /\  ( B D C )  e.  X  /\  C  e.  X ) )
103, 4ablodivdiv4 21879 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  ( B D C )  e.  X  /\  C  e.  X ) )  -> 
( ( A D ( B D C ) ) D C )  =  ( A D ( ( B D C ) G C ) ) )
119, 10syldan 457 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D ( B D C ) ) D C )  =  ( A D ( ( B D C ) G C ) ) )
123, 4grponpcan 21840 . . . . 5  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  (
( B D C ) G C )  =  B )
132, 12syl3an1 1217 . . . 4  |-  ( ( G  e.  AbelOp  /\  B  e.  X  /\  C  e.  X )  ->  (
( B D C ) G C )  =  B )
14133adant3r1 1162 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( B D C ) G C )  =  B )
1514oveq2d 6097 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( ( B D C ) G C ) )  =  ( A D B ) )
1611, 15eqtrd 2468 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D ( B D C ) ) D C )  =  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ran crn 4879   ` cfv 5454  (class class class)co 6081   GrpOpcgr 21774    /g cgs 21777   AbelOpcablo 21869
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-grpo 21779  df-gid 21780  df-ginv 21781  df-gdiv 21782  df-ablo 21870
  Copyright terms: Public domain W3C validator