MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablosn Unicode version

Theorem ablosn 21067
Description: The Abelian group operation for the singleton group. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablsn.1  |-  A  e. 
_V
Assertion
Ref Expression
ablosn  |-  { <. <. A ,  A >. ,  A >. }  e.  AbelOp

Proof of Theorem ablosn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablsn.1 . . 3  |-  A  e. 
_V
21grposn 20935 . 2  |-  { <. <. A ,  A >. ,  A >. }  e.  GrpOp
31dmsnop 5184 . . 3  |-  dom  { <. <. A ,  A >. ,  A >. }  =  { <. A ,  A >. }
41, 1xpsn 5738 . . 3  |-  ( { A }  X.  { A } )  =  { <. A ,  A >. }
53, 4eqtr4i 2339 . 2  |-  dom  { <. <. A ,  A >. ,  A >. }  =  ( { A }  X.  { A } )
6 elsn 3689 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
7 elsn 3689 . . 3  |-  ( y  e.  { A }  <->  y  =  A )
8 oveq12 5909 . . . 4  |-  ( ( x  =  A  /\  y  =  A )  ->  ( x { <. <. A ,  A >. ,  A >. } y )  =  ( A { <. <. A ,  A >. ,  A >. } A
) )
9 oveq2 5908 . . . . 5  |-  ( x  =  A  ->  (
y { <. <. A ,  A >. ,  A >. } x )  =  ( y { <. <. A ,  A >. ,  A >. } A ) )
10 oveq1 5907 . . . . 5  |-  ( y  =  A  ->  (
y { <. <. A ,  A >. ,  A >. } A )  =  ( A { <. <. A ,  A >. ,  A >. } A ) )
119, 10sylan9eq 2368 . . . 4  |-  ( ( x  =  A  /\  y  =  A )  ->  ( y { <. <. A ,  A >. ,  A >. } x )  =  ( A { <. <. A ,  A >. ,  A >. } A
) )
128, 11eqtr4d 2351 . . 3  |-  ( ( x  =  A  /\  y  =  A )  ->  ( x { <. <. A ,  A >. ,  A >. } y )  =  ( y {
<. <. A ,  A >. ,  A >. } x
) )
136, 7, 12syl2anb 465 . 2  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
x { <. <. A ,  A >. ,  A >. } y )  =  ( y { <. <. A ,  A >. ,  A >. } x ) )
142, 5, 13isabloi 21008 1  |-  { <. <. A ,  A >. ,  A >. }  e.  AbelOp
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1633    e. wcel 1701   _Vcvv 2822   {csn 3674   <.cop 3677    X. cxp 4724   dom cdm 4726  (class class class)co 5900   AbelOpcablo 21001
This theorem is referenced by:  rngosn  21124
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-grpo 20911  df-ablo 21002
  Copyright terms: Public domain W3C validator