MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpnpcan Structured version   Unicode version

Theorem ablpnpcan 15446
Description: Cancellation law for mixed addition and subtraction. (pnpcan 9342 analog.) (Contributed by NM, 29-May-2015.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
ablsubsub.g  |-  ( ph  ->  G  e.  Abel )
ablsubsub.x  |-  ( ph  ->  X  e.  B )
ablsubsub.y  |-  ( ph  ->  Y  e.  B )
ablsubsub.z  |-  ( ph  ->  Z  e.  B )
ablpnpcan.g  |-  ( ph  ->  G  e.  Abel )
ablpnpcan.x  |-  ( ph  ->  X  e.  B )
ablpnpcan.y  |-  ( ph  ->  Y  e.  B )
ablpnpcan.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
ablpnpcan  |-  ( ph  ->  ( ( X  .+  Y )  .-  ( X  .+  Z ) )  =  ( Y  .-  Z ) )

Proof of Theorem ablpnpcan
StepHypRef Expression
1 ablsubsub.g . . 3  |-  ( ph  ->  G  e.  Abel )
2 ablsubsub.x . . 3  |-  ( ph  ->  X  e.  B )
3 ablsubsub.y . . 3  |-  ( ph  ->  Y  e.  B )
4 ablsubsub.z . . 3  |-  ( ph  ->  Z  e.  B )
5 ablsubadd.b . . . 4  |-  B  =  ( Base `  G
)
6 ablsubadd.p . . . 4  |-  .+  =  ( +g  `  G )
7 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
85, 6, 7ablsub4 15439 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( X  .+  Z ) )  =  ( ( X  .-  X )  .+  ( Y  .-  Z ) ) )
91, 2, 3, 2, 4, 8syl122anc 1194 . 2  |-  ( ph  ->  ( ( X  .+  Y )  .-  ( X  .+  Z ) )  =  ( ( X 
.-  X )  .+  ( Y  .-  Z ) ) )
10 ablgrp 15419 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
111, 10syl 16 . . . 4  |-  ( ph  ->  G  e.  Grp )
12 eqid 2438 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
135, 12, 7grpsubid 14875 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .-  X
)  =  ( 0g
`  G ) )
1411, 2, 13syl2anc 644 . . 3  |-  ( ph  ->  ( X  .-  X
)  =  ( 0g
`  G ) )
1514oveq1d 6098 . 2  |-  ( ph  ->  ( ( X  .-  X )  .+  ( Y  .-  Z ) )  =  ( ( 0g
`  G )  .+  ( Y  .-  Z ) ) )
165, 7grpsubcl 14871 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .-  Z
)  e.  B )
1711, 3, 4, 16syl3anc 1185 . . 3  |-  ( ph  ->  ( Y  .-  Z
)  e.  B )
185, 6, 12grplid 14837 . . 3  |-  ( ( G  e.  Grp  /\  ( Y  .-  Z )  e.  B )  -> 
( ( 0g `  G )  .+  ( Y  .-  Z ) )  =  ( Y  .-  Z ) )
1911, 17, 18syl2anc 644 . 2  |-  ( ph  ->  ( ( 0g `  G )  .+  ( Y  .-  Z ) )  =  ( Y  .-  Z ) )
209, 15, 193eqtrd 2474 1  |-  ( ph  ->  ( ( X  .+  Y )  .-  ( X  .+  Z ) )  =  ( Y  .-  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726   ` cfv 5456  (class class class)co 6083   Basecbs 13471   +g cplusg 13531   0gc0g 13725   Grpcgrp 14687   -gcsg 14690   Abelcabel 15415
This theorem is referenced by:  hdmaprnlem7N  32658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-0g 13729  df-mnd 14692  df-grp 14814  df-minusg 14815  df-sbg 14816  df-cmn 15416  df-abl 15417
  Copyright terms: Public domain W3C validator