MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsub4 Structured version   Unicode version

Theorem ablsub4 15427
Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
ablsub4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  W ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  W ) ) )

Proof of Theorem ablsub4
StepHypRef Expression
1 ablgrp 15407 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
213ad2ant1 978 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Grp )
3 simp2l 983 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  X  e.  B )
4 simp2r 984 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Y  e.  B )
5 ablsubadd.b . . . . 5  |-  B  =  ( Base `  G
)
6 ablsubadd.p . . . . 5  |-  .+  =  ( +g  `  G )
75, 6grpcl 14808 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
82, 3, 4, 7syl3anc 1184 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .+  Y )  e.  B )
9 simp3l 985 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Z  e.  B )
10 simp3r 986 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  W  e.  B )
115, 6grpcl 14808 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  W  e.  B )  ->  ( Z  .+  W
)  e.  B )
122, 9, 10, 11syl3anc 1184 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .+  W )  e.  B )
13 eqid 2435 . . . 4  |-  ( inv g `  G )  =  ( inv g `  G )
14 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
155, 6, 13, 14grpsubval 14838 . . 3  |-  ( ( ( X  .+  Y
)  e.  B  /\  ( Z  .+  W )  e.  B )  -> 
( ( X  .+  Y )  .-  ( Z  .+  W ) )  =  ( ( X 
.+  Y )  .+  ( ( inv g `  G ) `  ( Z  .+  W ) ) ) )
168, 12, 15syl2anc 643 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  W ) )  =  ( ( X  .+  Y )  .+  (
( inv g `  G ) `  ( Z  .+  W ) ) ) )
17 ablcmn 15408 . . . . 5  |-  ( G  e.  Abel  ->  G  e. CMnd
)
18173ad2ant1 978 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e. CMnd )
19 simp2 958 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  e.  B  /\  Y  e.  B )
)
205, 13grpinvcl 14840 . . . . 5  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( inv g `  G ) `  Z
)  e.  B )
212, 9, 20syl2anc 643 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( inv g `  G ) `  Z
)  e.  B )
225, 13grpinvcl 14840 . . . . 5  |-  ( ( G  e.  Grp  /\  W  e.  B )  ->  ( ( inv g `  G ) `  W
)  e.  B )
232, 10, 22syl2anc 643 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( inv g `  G ) `  W
)  e.  B )
245, 6cmn4 15421 . . . 4  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( ( inv g `  G ) `
 Z )  e.  B  /\  ( ( inv g `  G
) `  W )  e.  B ) )  -> 
( ( X  .+  Y )  .+  (
( ( inv g `  G ) `  Z
)  .+  ( ( inv g `  G ) `
 W ) ) )  =  ( ( X  .+  ( ( inv g `  G
) `  Z )
)  .+  ( Y  .+  ( ( inv g `  G ) `  W
) ) ) )
2518, 19, 21, 23, 24syl112anc 1188 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( (
( inv g `  G ) `  Z
)  .+  ( ( inv g `  G ) `
 W ) ) )  =  ( ( X  .+  ( ( inv g `  G
) `  Z )
)  .+  ( Y  .+  ( ( inv g `  G ) `  W
) ) ) )
26 simp1 957 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Abel )
275, 6, 13ablinvadd 15424 . . . . 5  |-  ( ( G  e.  Abel  /\  Z  e.  B  /\  W  e.  B )  ->  (
( inv g `  G ) `  ( Z  .+  W ) )  =  ( ( ( inv g `  G
) `  Z )  .+  ( ( inv g `  G ) `  W
) ) )
2826, 9, 10, 27syl3anc 1184 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( inv g `  G ) `  ( Z  .+  W ) )  =  ( ( ( inv g `  G
) `  Z )  .+  ( ( inv g `  G ) `  W
) ) )
2928oveq2d 6089 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( ( inv g `  G ) `
 ( Z  .+  W ) ) )  =  ( ( X 
.+  Y )  .+  ( ( ( inv g `  G ) `
 Z )  .+  ( ( inv g `  G ) `  W
) ) ) )
305, 6, 13, 14grpsubval 14838 . . . . 5  |-  ( ( X  e.  B  /\  Z  e.  B )  ->  ( X  .-  Z
)  =  ( X 
.+  ( ( inv g `  G ) `
 Z ) ) )
313, 9, 30syl2anc 643 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .-  Z )  =  ( X  .+  (
( inv g `  G ) `  Z
) ) )
325, 6, 13, 14grpsubval 14838 . . . . 5  |-  ( ( Y  e.  B  /\  W  e.  B )  ->  ( Y  .-  W
)  =  ( Y 
.+  ( ( inv g `  G ) `
 W ) ) )
334, 10, 32syl2anc 643 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Y  .-  W )  =  ( Y  .+  (
( inv g `  G ) `  W
) ) )
3431, 33oveq12d 6091 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .-  Z
)  .+  ( Y  .-  W ) )  =  ( ( X  .+  ( ( inv g `  G ) `  Z
) )  .+  ( Y  .+  ( ( inv g `  G ) `
 W ) ) ) )
3525, 29, 343eqtr4d 2477 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( ( inv g `  G ) `
 ( Z  .+  W ) ) )  =  ( ( X 
.-  Z )  .+  ( Y  .-  W ) ) )
3616, 35eqtrd 2467 1  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  W ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  W ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   Basecbs 13459   +g cplusg 13519   Grpcgrp 14675   inv gcminusg 14676   -gcsg 14678  CMndccmn 15402   Abelcabel 15403
This theorem is referenced by:  abladdsub4  15428  ablpnpcan  15434  minveclem2  19317  baerlem3lem1  32406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-0g 13717  df-mnd 14680  df-grp 14802  df-minusg 14803  df-sbg 14804  df-cmn 15404  df-abl 15405
  Copyright terms: Public domain W3C validator