Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex Structured version   Unicode version

Theorem abrexex 5975
 Description: Existence of a class abstraction of existentially restricted sets. is normally a free-variable parameter in the class expression substituted for , which can be thought of as . This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5957, funex 5955, fnex 5953, resfunexg 5949, and funimaexg 5522. See also abrexex2 5993. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
abrexex.1
Assertion
Ref Expression
abrexex
Distinct variable groups:   ,,   ,
Allowed substitution hint:   ()

Proof of Theorem abrexex
StepHypRef Expression
1 eqid 2435 . . 3
21rnmpt 5108 . 2
3 abrexex.1 . . . 4
43mptex 5958 . . 3
54rnex 5125 . 2
62, 5eqeltrri 2506 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   wcel 1725  cab 2421  wrex 2698  cvv 2948   cmpt 4258   crn 4871 This theorem is referenced by:  ab2rexex  6218  kmlem10  8031  shftfval  11877  dvdsrval  15742  cmpsublem  17454  cmpsub  17455  ptrescn  17663  heibor1lem  26509  eldiophb  26806  pointsetN  30475 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454
 Copyright terms: Public domain W3C validator