MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex Unicode version

Theorem abrexex 5924
Description: Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in the class expression substituted for  B, which can be thought of as  B ( x ). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5906, funex 5904, fnex 5902, resfunexg 5898, and funimaexg 5472. See also abrexex2 5942. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
abrexex.1  |-  A  e. 
_V
Assertion
Ref Expression
abrexex  |-  { y  |  E. x  e.  A  y  =  B }  e.  _V
Distinct variable groups:    x, y, A    y, B
Allowed substitution hint:    B( x)

Proof of Theorem abrexex
StepHypRef Expression
1 eqid 2389 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
21rnmpt 5058 . 2  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
3 abrexex.1 . . . 4  |-  A  e. 
_V
43mptex 5907 . . 3  |-  ( x  e.  A  |->  B )  e.  _V
54rnex 5075 . 2  |-  ran  (
x  e.  A  |->  B )  e.  _V
62, 5eqeltrri 2460 1  |-  { y  |  E. x  e.  A  y  =  B }  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   {cab 2375   E.wrex 2652   _Vcvv 2901    e. cmpt 4209   ran crn 4821
This theorem is referenced by:  ab2rexex  6167  kmlem10  7974  shftfval  11814  dvdsrval  15679  cmpsublem  17386  cmpsub  17387  ptrescn  17594  heibor1lem  26211  eldiophb  26508  pointsetN  29857
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404
  Copyright terms: Public domain W3C validator