MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1m Unicode version

Theorem abs1m 11785
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.)
Assertion
Ref Expression
abs1m  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
Distinct variable group:    x, A

Proof of Theorem abs1m
StepHypRef Expression
1 fveq2 5458 . . . . . 6  |-  ( A  =  0  ->  ( abs `  A )  =  ( abs `  0
) )
2 abs0 11736 . . . . . 6  |-  ( abs `  0 )  =  0
31, 2syl6eq 2306 . . . . 5  |-  ( A  =  0  ->  ( abs `  A )  =  0 )
4 oveq2 5800 . . . . 5  |-  ( A  =  0  ->  (
x  x.  A )  =  ( x  x.  0 ) )
53, 4eqeq12d 2272 . . . 4  |-  ( A  =  0  ->  (
( abs `  A
)  =  ( x  x.  A )  <->  0  =  ( x  x.  0
) ) )
65anbi2d 687 . . 3  |-  ( A  =  0  ->  (
( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <-> 
( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) ) )
76rexbidv 2539 . 2  |-  ( A  =  0  ->  ( E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) ) )
8 simpl 445 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  e.  CC )
98cjcld 11647 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( * `  A
)  e.  CC )
10 abscl 11729 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
1110adantr 453 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR )
1211recnd 8829 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  CC )
13 abs00 11740 . . . . . 6  |-  ( A  e.  CC  ->  (
( abs `  A
)  =  0  <->  A  =  0 ) )
1413necon3bid 2456 . . . . 5  |-  ( A  e.  CC  ->  (
( abs `  A
)  =/=  0  <->  A  =/=  0 ) )
1514biimpar 473 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =/=  0 )
169, 12, 15divcld 9504 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( * `  A )  /  ( abs `  A ) )  e.  CC )
17 absdiv 11746 . . . . 5  |-  ( ( ( * `  A
)  e.  CC  /\  ( abs `  A )  e.  CC  /\  ( abs `  A )  =/=  0 )  ->  ( abs `  ( ( * `
 A )  / 
( abs `  A
) ) )  =  ( ( abs `  (
* `  A )
)  /  ( abs `  ( abs `  A
) ) ) )
189, 12, 15, 17syl3anc 1187 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  ( ( abs `  ( * `  A
) )  /  ( abs `  ( abs `  A
) ) ) )
19 abscj 11730 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( * `  A ) )  =  ( abs `  A
) )
2019adantr 453 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
* `  A )
)  =  ( abs `  A ) )
21 absidm 11773 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( abs `  A
) )  =  ( abs `  A ) )
2221adantr 453 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  ( abs `  A ) )  =  ( abs `  A
) )
2320, 22oveq12d 5810 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  (
* `  A )
)  /  ( abs `  ( abs `  A
) ) )  =  ( ( abs `  A
)  /  ( abs `  A ) ) )
2412, 15dividd 9502 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
)  /  ( abs `  A ) )  =  1 )
2518, 23, 243eqtrd 2294 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1 )
268, 9, 12, 15divassd 9539 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  x.  ( * `  A
) )  /  ( abs `  A ) )  =  ( A  x.  ( ( * `  A )  /  ( abs `  A ) ) ) )
2712, 12, 15divcan3d 9509 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( abs `  A )  x.  ( abs `  A ) )  /  ( abs `  A
) )  =  ( abs `  A ) )
2812sqvald 11209 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( ( abs `  A )  x.  ( abs `  A ) ) )
29 absvalsq 11731 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
3029adantr 453 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
3128, 30eqtr3d 2292 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
)  x.  ( abs `  A ) )  =  ( A  x.  (
* `  A )
) )
3231oveq1d 5807 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( abs `  A )  x.  ( abs `  A ) )  /  ( abs `  A
) )  =  ( ( A  x.  (
* `  A )
)  /  ( abs `  A ) ) )
3327, 32eqtr3d 2292 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =  ( ( A  x.  ( * `
 A ) )  /  ( abs `  A
) ) )
3416, 8mulcomd 8824 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
)  =  ( A  x.  ( ( * `
 A )  / 
( abs `  A
) ) ) )
3526, 33, 343eqtr4d 2300 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =  ( ( ( * `  A
)  /  ( abs `  A ) )  x.  A ) )
36 fveq2 5458 . . . . . 6  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  ( abs `  x )  =  ( abs `  (
( * `  A
)  /  ( abs `  A ) ) ) )
3736eqeq1d 2266 . . . . 5  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( abs `  x
)  =  1  <->  ( abs `  ( ( * `
 A )  / 
( abs `  A
) ) )  =  1 ) )
38 oveq1 5799 . . . . . 6  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
x  x.  A )  =  ( ( ( * `  A )  /  ( abs `  A
) )  x.  A
) )
3938eqeq2d 2269 . . . . 5  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( abs `  A
)  =  ( x  x.  A )  <->  ( abs `  A )  =  ( ( ( * `  A )  /  ( abs `  A ) )  x.  A ) ) )
4037, 39anbi12d 694 . . . 4  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <-> 
( ( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1  /\  ( abs `  A )  =  ( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
) ) ) )
4140rcla4ev 2859 . . 3  |-  ( ( ( ( * `  A )  /  ( abs `  A ) )  e.  CC  /\  (
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1  /\  ( abs `  A )  =  ( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
) ) )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
4216, 25, 35, 41syl12anc 1185 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
43 ax-icn 8764 . . . 4  |-  _i  e.  CC
44 absi 11737 . . . . 5  |-  ( abs `  _i )  =  1
4543mul01i 8970 . . . . . 6  |-  ( _i  x.  0 )  =  0
4645eqcomi 2262 . . . . 5  |-  0  =  ( _i  x.  0 )
4744, 46pm3.2i 443 . . . 4  |-  ( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) )
48 fveq2 5458 . . . . . . 7  |-  ( x  =  _i  ->  ( abs `  x )  =  ( abs `  _i ) )
4948eqeq1d 2266 . . . . . 6  |-  ( x  =  _i  ->  (
( abs `  x
)  =  1  <->  ( abs `  _i )  =  1 ) )
50 oveq1 5799 . . . . . . 7  |-  ( x  =  _i  ->  (
x  x.  0 )  =  ( _i  x.  0 ) )
5150eqeq2d 2269 . . . . . 6  |-  ( x  =  _i  ->  (
0  =  ( x  x.  0 )  <->  0  =  ( _i  x.  0
) ) )
5249, 51anbi12d 694 . . . . 5  |-  ( x  =  _i  ->  (
( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) )  <-> 
( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) ) ) )
5352rcla4ev 2859 . . . 4  |-  ( ( _i  e.  CC  /\  ( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) ) )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) )
5443, 47, 53mp2an 656 . . 3  |-  E. x  e.  CC  ( ( abs `  x )  =  1  /\  0  =  ( x  x.  0 ) )
5554a1i 12 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  0  =  ( x  x.  0 ) ) )
567, 42, 55pm2.61ne 2496 1  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   E.wrex 2519   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706   _ici 8707    x. cmul 8710    / cdiv 9391   2c2 9763   ^cexp 11071   *ccj 11547   abscabs 11685
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9934  df-z 9993  df-uz 10199  df-rp 10323  df-seq 11014  df-exp 11072  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687
  Copyright terms: Public domain W3C validator