MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1m Unicode version

Theorem abs1m 11821
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.)
Assertion
Ref Expression
abs1m  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
Distinct variable group:    x, A

Proof of Theorem abs1m
StepHypRef Expression
1 fveq2 5527 . . . . . 6  |-  ( A  =  0  ->  ( abs `  A )  =  ( abs `  0
) )
2 abs0 11772 . . . . . 6  |-  ( abs `  0 )  =  0
31, 2syl6eq 2333 . . . . 5  |-  ( A  =  0  ->  ( abs `  A )  =  0 )
4 oveq2 5868 . . . . 5  |-  ( A  =  0  ->  (
x  x.  A )  =  ( x  x.  0 ) )
53, 4eqeq12d 2299 . . . 4  |-  ( A  =  0  ->  (
( abs `  A
)  =  ( x  x.  A )  <->  0  =  ( x  x.  0
) ) )
65anbi2d 684 . . 3  |-  ( A  =  0  ->  (
( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <-> 
( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) ) )
76rexbidv 2566 . 2  |-  ( A  =  0  ->  ( E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) ) )
8 simpl 443 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  e.  CC )
98cjcld 11683 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( * `  A
)  e.  CC )
10 abscl 11765 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
1110adantr 451 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR )
1211recnd 8863 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  CC )
13 abs00 11776 . . . . . 6  |-  ( A  e.  CC  ->  (
( abs `  A
)  =  0  <->  A  =  0 ) )
1413necon3bid 2483 . . . . 5  |-  ( A  e.  CC  ->  (
( abs `  A
)  =/=  0  <->  A  =/=  0 ) )
1514biimpar 471 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =/=  0 )
169, 12, 15divcld 9538 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( * `  A )  /  ( abs `  A ) )  e.  CC )
17 absdiv 11782 . . . . 5  |-  ( ( ( * `  A
)  e.  CC  /\  ( abs `  A )  e.  CC  /\  ( abs `  A )  =/=  0 )  ->  ( abs `  ( ( * `
 A )  / 
( abs `  A
) ) )  =  ( ( abs `  (
* `  A )
)  /  ( abs `  ( abs `  A
) ) ) )
189, 12, 15, 17syl3anc 1182 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  ( ( abs `  ( * `  A
) )  /  ( abs `  ( abs `  A
) ) ) )
19 abscj 11766 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( * `  A ) )  =  ( abs `  A
) )
2019adantr 451 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
* `  A )
)  =  ( abs `  A ) )
21 absidm 11809 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( abs `  A
) )  =  ( abs `  A ) )
2221adantr 451 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  ( abs `  A ) )  =  ( abs `  A
) )
2320, 22oveq12d 5878 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  (
* `  A )
)  /  ( abs `  ( abs `  A
) ) )  =  ( ( abs `  A
)  /  ( abs `  A ) ) )
2412, 15dividd 9536 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
)  /  ( abs `  A ) )  =  1 )
2518, 23, 243eqtrd 2321 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1 )
268, 9, 12, 15divassd 9573 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  x.  ( * `  A
) )  /  ( abs `  A ) )  =  ( A  x.  ( ( * `  A )  /  ( abs `  A ) ) ) )
2712, 12, 15divcan3d 9543 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( abs `  A )  x.  ( abs `  A ) )  /  ( abs `  A
) )  =  ( abs `  A ) )
2812sqvald 11244 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( ( abs `  A )  x.  ( abs `  A ) ) )
29 absvalsq 11767 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
3029adantr 451 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
3128, 30eqtr3d 2319 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
)  x.  ( abs `  A ) )  =  ( A  x.  (
* `  A )
) )
3231oveq1d 5875 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( abs `  A )  x.  ( abs `  A ) )  /  ( abs `  A
) )  =  ( ( A  x.  (
* `  A )
)  /  ( abs `  A ) ) )
3327, 32eqtr3d 2319 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =  ( ( A  x.  ( * `
 A ) )  /  ( abs `  A
) ) )
3416, 8mulcomd 8858 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
)  =  ( A  x.  ( ( * `
 A )  / 
( abs `  A
) ) ) )
3526, 33, 343eqtr4d 2327 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =  ( ( ( * `  A
)  /  ( abs `  A ) )  x.  A ) )
36 fveq2 5527 . . . . . 6  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  ( abs `  x )  =  ( abs `  (
( * `  A
)  /  ( abs `  A ) ) ) )
3736eqeq1d 2293 . . . . 5  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( abs `  x
)  =  1  <->  ( abs `  ( ( * `
 A )  / 
( abs `  A
) ) )  =  1 ) )
38 oveq1 5867 . . . . . 6  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
x  x.  A )  =  ( ( ( * `  A )  /  ( abs `  A
) )  x.  A
) )
3938eqeq2d 2296 . . . . 5  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( abs `  A
)  =  ( x  x.  A )  <->  ( abs `  A )  =  ( ( ( * `  A )  /  ( abs `  A ) )  x.  A ) ) )
4037, 39anbi12d 691 . . . 4  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <-> 
( ( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1  /\  ( abs `  A )  =  ( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
) ) ) )
4140rspcev 2886 . . 3  |-  ( ( ( ( * `  A )  /  ( abs `  A ) )  e.  CC  /\  (
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1  /\  ( abs `  A )  =  ( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
) ) )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
4216, 25, 35, 41syl12anc 1180 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
43 ax-icn 8798 . . . 4  |-  _i  e.  CC
44 absi 11773 . . . . 5  |-  ( abs `  _i )  =  1
4543mul01i 9004 . . . . . 6  |-  ( _i  x.  0 )  =  0
4645eqcomi 2289 . . . . 5  |-  0  =  ( _i  x.  0 )
4744, 46pm3.2i 441 . . . 4  |-  ( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) )
48 fveq2 5527 . . . . . . 7  |-  ( x  =  _i  ->  ( abs `  x )  =  ( abs `  _i ) )
4948eqeq1d 2293 . . . . . 6  |-  ( x  =  _i  ->  (
( abs `  x
)  =  1  <->  ( abs `  _i )  =  1 ) )
50 oveq1 5867 . . . . . . 7  |-  ( x  =  _i  ->  (
x  x.  0 )  =  ( _i  x.  0 ) )
5150eqeq2d 2296 . . . . . 6  |-  ( x  =  _i  ->  (
0  =  ( x  x.  0 )  <->  0  =  ( _i  x.  0
) ) )
5249, 51anbi12d 691 . . . . 5  |-  ( x  =  _i  ->  (
( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) )  <-> 
( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) ) ) )
5352rspcev 2886 . . . 4  |-  ( ( _i  e.  CC  /\  ( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) ) )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) )
5443, 47, 53mp2an 653 . . 3  |-  E. x  e.  CC  ( ( abs `  x )  =  1  /\  0  =  ( x  x.  0 ) )
5554a1i 10 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  0  =  ( x  x.  0 ) ) )
567, 42, 55pm2.61ne 2523 1  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   E.wrex 2546   ` cfv 5257  (class class class)co 5860   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740   _ici 8741    x. cmul 8744    / cdiv 9425   2c2 9797   ^cexp 11106   *ccj 11583   abscabs 11721
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-sup 7196  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-seq 11049  df-exp 11107  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723
  Copyright terms: Public domain W3C validator