MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscxpbnd Unicode version

Theorem abscxpbnd 20041
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
abscxpbnd.1  |-  ( ph  ->  A  e.  CC )
abscxpbnd.2  |-  ( ph  ->  B  e.  CC )
abscxpbnd.3  |-  ( ph  ->  0  <_  ( Re `  B ) )
abscxpbnd.4  |-  ( ph  ->  M  e.  RR )
abscxpbnd.5  |-  ( ph  ->  ( abs `  A
)  <_  M )
Assertion
Ref Expression
abscxpbnd  |-  ( ph  ->  ( abs `  ( A  ^ c  B ) )  <_  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )

Proof of Theorem abscxpbnd
StepHypRef Expression
1 1le1 9350 . . . . 5  |-  1  <_  1
21a1i 12 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  1  <_  1
)
3 oveq12 5787 . . . . . . . 8  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  ^ c  B )  =  ( 0  ^ c  0 ) )
43adantll 697 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^ c  B )  =  ( 0  ^ c  0 ) )
5 0cn 8785 . . . . . . . 8  |-  0  e.  CC
6 cxp0 19965 . . . . . . . 8  |-  ( 0  e.  CC  ->  (
0  ^ c  0 )  =  1 )
75, 6ax-mp 10 . . . . . . 7  |-  ( 0  ^ c  0 )  =  1
84, 7syl6eq 2304 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( A  ^ c  B )  =  1 )
98fveq2d 5448 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  ( A  ^ c  B ) )  =  ( abs `  1 ) )
10 abs1 11733 . . . . 5  |-  ( abs `  1 )  =  1
119, 10syl6eq 2304 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  ( A  ^ c  B ) )  =  1 )
12 fveq2 5444 . . . . . . . . 9  |-  ( B  =  0  ->  (
Re `  B )  =  ( Re ` 
0 ) )
13 re0 11588 . . . . . . . . 9  |-  ( Re
`  0 )  =  0
1412, 13syl6eq 2304 . . . . . . . 8  |-  ( B  =  0  ->  (
Re `  B )  =  0 )
1514oveq2d 5794 . . . . . . 7  |-  ( B  =  0  ->  ( M  ^ c  ( Re
`  B ) )  =  ( M  ^ c  0 ) )
16 abscxpbnd.4 . . . . . . . . . 10  |-  ( ph  ->  M  e.  RR )
1716recnd 8815 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
1817cxp0d 20000 . . . . . . . 8  |-  ( ph  ->  ( M  ^ c 
0 )  =  1 )
1918adantr 453 . . . . . . 7  |-  ( (
ph  /\  A  = 
0 )  ->  ( M  ^ c  0 )  =  1 )
2015, 19sylan9eqr 2310 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( M  ^ c  ( Re `  B ) )  =  1 )
21 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  B  =  0 )
2221fveq2d 5448 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  B
)  =  ( abs `  0 ) )
23 abs0 11721 . . . . . . . . . . 11  |-  ( abs `  0 )  =  0
2422, 23syl6eq 2304 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  B
)  =  0 )
2524oveq1d 5793 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( abs `  B )  x.  pi )  =  ( 0  x.  pi ) )
26 pire 19780 . . . . . . . . . . 11  |-  pi  e.  RR
2726recni 8803 . . . . . . . . . 10  |-  pi  e.  CC
2827mul02i 8955 . . . . . . . . 9  |-  ( 0  x.  pi )  =  0
2925, 28syl6eq 2304 . . . . . . . 8  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( abs `  B )  x.  pi )  =  0 )
3029fveq2d 5448 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  =  ( exp `  0 ) )
31 ef0 12320 . . . . . . 7  |-  ( exp `  0 )  =  1
3230, 31syl6eq 2304 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  =  1 )
3320, 32oveq12d 5796 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  =  ( 1  x.  1 ) )
34 1t1e1 9823 . . . . 5  |-  ( 1  x.  1 )  =  1
3533, 34syl6eq 2304 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  =  1 )
362, 11, 353brtr4d 4013 . . 3  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =  0 )  ->  ( abs `  ( A  ^ c  B ) )  <_  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
37 simplr 734 . . . . . . . 8  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  ->  A  =  0 )
3837oveq1d 5793 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^ c  B )  =  ( 0  ^ c  B
) )
39 abscxpbnd.2 . . . . . . . . 9  |-  ( ph  ->  B  e.  CC )
4039adantr 453 . . . . . . . 8  |-  ( (
ph  /\  A  = 
0 )  ->  B  e.  CC )
41 0cxp 19961 . . . . . . . 8  |-  ( ( B  e.  CC  /\  B  =/=  0 )  -> 
( 0  ^ c  B )  =  0 )
4240, 41sylan 459 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( 0  ^ c  B )  =  0 )
4338, 42eqtrd 2288 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( A  ^ c  B )  =  0 )
4443fveq2d 5448 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( abs `  ( A  ^ c  B ) )  =  ( abs `  0 ) )
4544, 23syl6eq 2304 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( abs `  ( A  ^ c  B ) )  =  0 )
46 0re 8792 . . . . . . . . 9  |-  0  e.  RR
4746a1i 12 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
48 abscxpbnd.1 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
4948abscld 11869 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  e.  RR )
5048absge0d 11877 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  A ) )
51 abscxpbnd.5 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  <_  M )
5247, 49, 16, 50, 51letrd 8927 . . . . . . 7  |-  ( ph  ->  0  <_  M )
5339recld 11630 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  RR )
5416, 52, 53recxpcld 20018 . . . . . 6  |-  ( ph  ->  ( M  ^ c 
( Re `  B
) )  e.  RR )
5554ad2antrr 709 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( M  ^ c 
( Re `  B
) )  e.  RR )
5639abscld 11869 . . . . . . . 8  |-  ( ph  ->  ( abs `  B
)  e.  RR )
5756ad2antrr 709 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( abs `  B
)  e.  RR )
58 remulcl 8776 . . . . . . 7  |-  ( ( ( abs `  B
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
5957, 26, 58sylancl 646 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
6059reefcld 12317 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
6116, 52, 53cxpge0d 20019 . . . . . 6  |-  ( ph  ->  0  <_  ( M  ^ c  ( Re `  B ) ) )
6261ad2antrr 709 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
0  <_  ( M  ^ c  ( Re `  B ) ) )
6359rpefcld 12333 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR+ )
6463rpge0d 10347 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
0  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) )
6555, 60, 62, 64mulge0d 9303 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
0  <_  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
6645, 65eqbrtrd 4003 . . 3  |-  ( ( ( ph  /\  A  =  0 )  /\  B  =/=  0 )  -> 
( abs `  ( A  ^ c  B ) )  <_  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
6736, 66pm2.61dane 2497 . 2  |-  ( (
ph  /\  A  = 
0 )  ->  ( abs `  ( A  ^ c  B ) )  <_ 
( ( M  ^ c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
6848adantr 453 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  A  e.  CC )
69 simpr 449 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  A  =/=  0 )
7039adantr 453 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  B  e.  CC )
7168, 69, 70cxpefd 20007 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( A  ^ c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
7271fveq2d 5448 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( A  ^ c  B ) )  =  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
73 logcl 19874 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
7448, 73sylan 459 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( log `  A )  e.  CC )
7570, 74mulcld 8809 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( B  x.  ( log `  A ) )  e.  CC )
76 absef 12425 . . . . 5  |-  ( ( B  x.  ( log `  A ) )  e.  CC  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
7775, 76syl 17 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
7870recld 11630 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  B )  e.  RR )
7974recld 11630 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  ( log `  A ) )  e.  RR )
8078, 79remulcld 8817 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) )  e.  RR )
8180recnd 8815 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) )  e.  CC )
8270imcld 11631 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  B )  e.  RR )
8374imcld 11631 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  ( log `  A ) )  e.  RR )
8483renegcld 9164 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  -u (
Im `  ( log `  A ) )  e.  RR )
8582, 84remulcld 8817 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  RR )
8685recnd 8815 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )
87 efadd 12323 . . . . . 6  |-  ( ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC  /\  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )  -> 
( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
8881, 86, 87syl2anc 645 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
8982, 83remulcld 8817 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) )  e.  RR )
9089recnd 8815 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) )  e.  CC )
9181, 90negsubd 9117 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  -  ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) ) )
9282recnd 8815 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  B )  e.  CC )
9383recnd 8815 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  ( log `  A ) )  e.  CC )
9492, 93mulneg2d 9187 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  =  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )
9594oveq2d 5794 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) ) )
9670, 74remuld 11654 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  ( B  x.  ( log `  A
) ) )  =  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  -  ( ( Im `  B )  x.  ( Im `  ( log `  A ) ) ) ) )
9791, 95, 963eqtr4d 2298 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( Re `  ( B  x.  ( log `  A
) ) ) )
9897fveq2d 5448 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( exp `  ( Re
`  ( B  x.  ( log `  A ) ) ) ) )
99 relog 19898 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
10048, 99sylan 459 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
101100oveq2d 5794 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) )  =  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) )
102101fveq2d 5448 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A ) ) ) ) )
10349recnd 8815 . . . . . . . . 9  |-  ( ph  ->  ( abs `  A
)  e.  CC )
104103adantr 453 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  e.  CC )
105 abs00 11725 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( abs `  A
)  =  0  <->  A  =  0 ) )
10648, 105syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  A
)  =  0  <->  A  =  0 ) )
107106necon3bid 2454 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  A
)  =/=  0  <->  A  =/=  0 ) )
108107biimpar 473 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  =/=  0 )
10978recnd 8815 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Re `  B )  e.  CC )
110104, 108, 109cxpefd 20007 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  ^ c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
111102, 110eqtr4d 2291 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) ) )  =  ( ( abs `  A
)  ^ c  ( Re `  B ) ) )
112111oveq1d 5793 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( ( abs `  A
)  ^ c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
11388, 98, 1123eqtr3d 2296 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) )  =  ( ( ( abs `  A
)  ^ c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
11472, 77, 1133eqtrd 2292 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( A  ^ c  B ) )  =  ( ( ( abs `  A )  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) ) )
11568abscld 11869 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  e.  RR )
11668absge0d 11877 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( abs `  A
) )
117115, 116, 78recxpcld 20018 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  ^ c  ( Re `  B ) )  e.  RR )
11885reefcld 12317 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
119117, 118remulcld 8817 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( abs `  A
)  ^ c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )  e.  RR )
12054adantr 453 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( M  ^ c  ( Re
`  B ) )  e.  RR )
121120, 118remulcld 8817 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( M  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  e.  RR )
12256, 26, 58sylancl 646 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  pi )  e.  RR )
123122reefcld 12317 . . . . . 6  |-  ( ph  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
124123adantr 453 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( abs `  B )  x.  pi ) )  e.  RR )
125120, 124remulcld 8817 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( M  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) )  e.  RR )
12685rpefcld 12333 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  e.  RR+ )
127126rpge0d 10347 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
12816adantr 453 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  M  e.  RR )
129 abscxpbnd.3 . . . . . . 7  |-  ( ph  ->  0  <_  ( Re `  B ) )
130129adantr 453 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( Re `  B
) )
13151adantr 453 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  <_  M )
132115, 116, 128, 78, 130, 131cxple2ad 20020 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  ^ c  ( Re `  B ) )  <_  ( M  ^ c  ( Re `  B ) ) )
133117, 120, 118, 127, 132lemul1ad 9650 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( abs `  A
)  ^ c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) ) )
13461adantr 453 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( M  ^ c 
( Re `  B
) ) )
13592abscld 11869 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( Im `  B ) )  e.  RR )
13684recnd 8815 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  -u (
Im `  ( log `  A ) )  e.  CC )
137136abscld 11869 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  -u ( Im `  ( log `  A ) ) )  e.  RR )
138135, 137remulcld 8817 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
139122adantr 453 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  B
)  x.  pi )  e.  RR )
14085leabsd 11848 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  <_  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
14192, 136absmuld 11887 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
142140, 141breqtrd 4007 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  ( Im `  B
) )  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
14370abscld 11869 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  B )  e.  RR )
144143, 137remulcld 8817 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
145136absge0d 11877 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( abs `  -u (
Im `  ( log `  A ) ) ) )
146 absimle 11745 . . . . . . . . . 10  |-  ( B  e.  CC  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
14770, 146syl 17 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
148135, 143, 137, 145, 147lemul1ad 9650 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
14926a1i 12 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  pi  e.  RR )
15070absge0d 11877 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( abs `  B
) )
15193absnegd 11882 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  -u ( Im `  ( log `  A ) ) )  =  ( abs `  ( Im
`  ( log `  A
) ) ) )
152 logimcl 19875 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
15348, 152sylan 459 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =/=  0 )  ->  ( -u pi  <  ( Im
`  ( log `  A
) )  /\  (
Im `  ( log `  A ) )  <_  pi ) )
154153simpld 447 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  0 )  ->  -u pi  <  ( Im `  ( log `  A ) ) )
15526renegcli 9062 . . . . . . . . . . . . 13  |-  -u pi  e.  RR
156 ltle 8864 . . . . . . . . . . . . 13  |-  ( (
-u pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
157155, 83, 156sylancr 647 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  0 )  ->  ( -u pi  <  ( Im
`  ( log `  A
) )  ->  -u pi  <_  ( Im `  ( log `  A ) ) ) )
158154, 157mpd 16 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  -u pi  <_  ( Im `  ( log `  A ) ) )
159153simprd 451 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  (
Im `  ( log `  A ) )  <_  pi )
160 absle 11750 . . . . . . . . . . . 12  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
16183, 26, 160sylancl 646 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
162158, 159, 161mpbir2and 893 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( Im `  ( log `  A ) ) )  <_  pi )
163151, 162eqbrtrd 4003 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  -u ( Im `  ( log `  A ) ) )  <_  pi )
164137, 149, 143, 150, 163lemul2ad 9651 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
165138, 144, 139, 148, 164letrd 8927 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
16685, 138, 139, 142, 165letrd 8927 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) )
167 efle 12346 . . . . . . 7  |-  ( ( ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR  /\  (
( abs `  B
)  x.  pi )  e.  RR )  -> 
( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
16885, 139, 167syl2anc 645 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) 
<->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
169166, 168mpbid 203 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B )  x.  pi ) ) )
170118, 124, 120, 134, 169lemul2ad 9651 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( M  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^ c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
171119, 121, 125, 133, 170letrd 8927 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( abs `  A
)  ^ c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^ c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) ) )
172114, 171eqbrtrd 4003 . 2  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  ( A  ^ c  B ) )  <_ 
( ( M  ^ c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
17367, 172pm2.61dane 2497 1  |-  ( ph  ->  ( abs `  ( A  ^ c  B ) )  <_  ( ( M  ^ c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   CCcc 8689   RRcr 8690   0cc0 8691   1c1 8692    + caddc 8694    x. cmul 8696    < clt 8821    <_ cle 8822    - cmin 8991   -ucneg 8992   Recre 11533   Imcim 11534   abscabs 11670   expce 12291   picpi 12296   logclog 19860    ^ c ccxp 19861
This theorem is referenced by:  o1cxp  20217
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-er 6614  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ioc 10613  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-fl 10877  df-mod 10926  df-seq 10999  df-exp 11057  df-fac 11241  df-bc 11268  df-hash 11290  df-shft 11513  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-limsup 11896  df-clim 11913  df-rlim 11914  df-sum 12110  df-ef 12297  df-sin 12299  df-cos 12300  df-pi 12302  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-submnd 14364  df-mulg 14440  df-cntz 14741  df-cmn 15039  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-lp 16816  df-perf 16817  df-cn 16905  df-cnp 16906  df-haus 16991  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-xms 17833  df-ms 17834  df-tms 17835  df-cncf 18330  df-limc 19164  df-dv 19165  df-log 19862  df-cxp 19863
  Copyright terms: Public domain W3C validator