MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absid Unicode version

Theorem absid 11783
Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absid  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( abs `  A
)  =  A )

Proof of Theorem absid
StepHypRef Expression
1 simpl 443 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
21recnd 8863 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  CC )
3 absval 11725 . . 3  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
42, 3syl 15 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( abs `  A
)  =  ( sqr `  ( A  x.  (
* `  A )
) ) )
51cjred 11713 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( * `  A
)  =  A )
65oveq2d 5876 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  x.  (
* `  A )
)  =  ( A  x.  A ) )
72sqvald 11244 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A ^ 2 )  =  ( A  x.  A ) )
86, 7eqtr4d 2320 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  x.  (
* `  A )
)  =  ( A ^ 2 ) )
98fveq2d 5531 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  ( A  x.  ( * `  A ) ) )  =  ( sqr `  ( A ^ 2 ) ) )
10 sqrsq 11757 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  ( A ^ 2 ) )  =  A )
114, 9, 103eqtrd 2321 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( abs `  A
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   CCcc 8737   RRcr 8738   0cc0 8739    x. cmul 8744    <_ cle 8870   2c2 9797   ^cexp 11106   *ccj 11583   sqrcsqr 11720   abscabs 11721
This theorem is referenced by:  abs1  11784  absnid  11785  leabs  11786  absor  11787  sqabs  11794  max0add  11797  absidm  11809  abssubge0  11813  fzomaxdiflem  11828  absidi  11863  absidd  11907  o1fsum  12273  geo2lim  12333  geoihalfsum  12340  ege2le3  12373  eirrlem  12484  rpnnen2lem3  12497  rpnnen2lem9  12503  iscmet3lem3  18718  minveclem2  18792  mbfi1fseqlem6  19077  dvfsumrlim  19380  aaliou3lem3  19726  pserulm  19800  pige3  19887  efif1olem4  19909  cxpcn3lem  20089  log2cnv  20242  log2tlbnd  20243  cxplim  20268  cxploglim2  20275  divsqrsumo1  20280  fsumharmonic  20307  logfacrlim  20465  logexprlim  20466  dchrmusum2  20645  dchrvmasumlem3  20650  dchrisum0lem1  20667  dchrisum0lem2a  20668  dchrisum0lem2  20669  mudivsum  20681  mulogsumlem  20682  log2sumbnd  20695  selberglem2  20697  selberg3lem1  20708  pntpbnd2  20738  pntibndlem2  20742  pntlemn  20751  pntlemj  20754  pntlemo  20758  nvsge0  21231  nmoub2i  21354  minvecolem2  21456  zetacvg  23691  subfacval3  23722  cntrset  25613  oddcomabszz  27040  stoweidlem7  27767
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-sup 7196  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-seq 11049  df-exp 11107  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723
  Copyright terms: Public domain W3C validator