MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abslt Unicode version

Theorem abslt 12081
Description: Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abslt  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <  B  <->  ( -u B  <  A  /\  A  < 
B ) ) )

Proof of Theorem abslt
StepHypRef Expression
1 simpll 731 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  A  e.  RR )
21renegcld 9428 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  -> 
-u A  e.  RR )
31recnd 9078 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  A  e.  CC )
4 abscl 12046 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
53, 4syl 16 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  ( abs `  A
)  e.  RR )
6 simplr 732 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  B  e.  RR )
7 leabs 12067 . . . . . . . 8  |-  ( -u A  e.  RR  ->  -u A  <_  ( abs `  -u A
) )
82, 7syl 16 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  -> 
-u A  <_  ( abs `  -u A ) )
9 absneg 12045 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  -u A )  =  ( abs `  A
) )
103, 9syl 16 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  ( abs `  -u A
)  =  ( abs `  A ) )
118, 10breqtrd 4204 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  -> 
-u A  <_  ( abs `  A ) )
12 simpr 448 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  ( abs `  A
)  <  B )
132, 5, 6, 11, 12lelttrd 9192 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  -> 
-u A  <  B
)
14 leabs 12067 . . . . . . 7  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )
1514ad2antrr 707 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  A  <_  ( abs `  A ) )
161, 5, 6, 15, 12lelttrd 9192 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  A  <  B )
1713, 16jca 519 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  ( -u A  < 
B  /\  A  <  B ) )
1817ex 424 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <  B  ->  (
-u A  <  B  /\  A  <  B ) ) )
19 absor 12068 . . . . 5  |-  ( A  e.  RR  ->  (
( abs `  A
)  =  A  \/  ( abs `  A )  =  -u A ) )
2019adantr 452 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  =  A  \/  ( abs `  A )  =  -u A ) )
21 breq1 4183 . . . . . . 7  |-  ( ( abs `  A )  =  A  ->  (
( abs `  A
)  <  B  <->  A  <  B ) )
2221biimprd 215 . . . . . 6  |-  ( ( abs `  A )  =  A  ->  ( A  <  B  ->  ( abs `  A )  < 
B ) )
23 breq1 4183 . . . . . . 7  |-  ( ( abs `  A )  =  -u A  ->  (
( abs `  A
)  <  B  <->  -u A  < 
B ) )
2423biimprd 215 . . . . . 6  |-  ( ( abs `  A )  =  -u A  ->  ( -u A  <  B  -> 
( abs `  A
)  <  B )
)
2522, 24jaoa 497 . . . . 5  |-  ( ( ( abs `  A
)  =  A  \/  ( abs `  A )  =  -u A )  -> 
( ( A  < 
B  /\  -u A  < 
B )  ->  ( abs `  A )  < 
B ) )
2625ancomsd 441 . . . 4  |-  ( ( ( abs `  A
)  =  A  \/  ( abs `  A )  =  -u A )  -> 
( ( -u A  <  B  /\  A  < 
B )  ->  ( abs `  A )  < 
B ) )
2720, 26syl 16 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  <  B  /\  A  < 
B )  ->  ( abs `  A )  < 
B ) )
2818, 27impbid 184 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <  B  <->  ( -u A  <  B  /\  A  < 
B ) ) )
29 ltnegcon1 9493 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  < 
B  <->  -u B  <  A
) )
3029anbi1d 686 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  <  B  /\  A  < 
B )  <->  ( -u B  <  A  /\  A  < 
B ) ) )
3128, 30bitrd 245 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <  B  <->  ( -u B  <  A  /\  A  < 
B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4180   ` cfv 5421   CCcc 8952   RRcr 8953    < clt 9084    <_ cle 9085   -ucneg 9256   abscabs 12002
This theorem is referenced by:  absdiflt  12084  abslti  12157  absltd  12195  tanregt0  20402  argregt0  20466  efopnlem2  20509  stoweidlem7  27631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-seq 11287  df-exp 11346  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004
  Copyright terms: Public domain W3C validator