MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmuld Unicode version

Theorem absmuld 11931
Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
abscld.1  |-  ( ph  ->  A  e.  CC )
abssubd.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
absmuld  |-  ( ph  ->  ( abs `  ( A  x.  B )
)  =  ( ( abs `  A )  x.  ( abs `  B
) ) )

Proof of Theorem absmuld
StepHypRef Expression
1 abscld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 abssubd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 absmul 11774 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  B )
)  =  ( ( abs `  A )  x.  ( abs `  B
) ) )
41, 2, 3syl2anc 644 1  |-  ( ph  ->  ( abs `  ( A  x.  B )
)  =  ( ( abs `  A )  x.  ( abs `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1624    e. wcel 1685   ` cfv 5222  (class class class)co 5820   CCcc 8731    x. cmul 8738   abscabs 11714
This theorem is referenced by:  mulcn2  12064  reccn2  12065  o1mul  12083  o1rlimmul  12087  iseraltlem3  12151  geomulcvg  12327  mertenslem1  12335  absef  12472  efieq1re  12474  mulgcddvds  12778  prmirredlem  16441  blcvx  18299  iblmulc2  19180  itgabs  19184  bddmulibl  19188  dveflem  19321  dvlip  19335  dvlipcn  19336  plyeq0lem  19587  aalioulem4  19710  radcnvlem1  19784  dvradcnv  19792  pserulm  19793  abelthlem5  19806  abelthlem7  19809  logtayllem  20001  abscxpbnd  20088  chordthmlem4  20127  divsqrsumo1  20273  ftalem1  20305  ftalem2  20306  ftalem5  20309  logexprlim  20459  lgsdilem2  20565  2sqlem3  20600  dchrisumlem2  20634  dchrmusum2  20638  dchrvmasumlem3  20643  dchrvmasumiflem1  20645  dchrisum0lem2a  20661  dchrisum0lem2  20662  mudivsum  20674  mulogsumlem  20675  mulog2sumlem1  20678  mulog2sumlem2  20679  2vmadivsumlem  20684  selberglem2  20690  selberg3lem1  20701  selberg4lem1  20704  pntrlog2bndlem1  20721  pntrlog2bndlem3  20723  pntibndlem2  20735  pntlemn  20744  pntlemj  20747  nmbdfnlbi  22622  nmcfnlbi  22625  subfaclim  23124  cntotbnd  25920  irrapxlem2  26308  irrapxlem5  26311  pellexlem2  26315
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-seq 11042  df-exp 11100  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716
  Copyright terms: Public domain W3C validator