MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmulgcd Unicode version

Theorem absmulgcd 12742
Description: Distribute absolute value of multiplication over gcd. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
absmulgcd  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( abs `  ( K  x.  ( M  gcd  N ) ) ) )

Proof of Theorem absmulgcd
StepHypRef Expression
1 gcdcl 12712 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
2 nn0re 9990 . . . . . 6  |-  ( ( M  gcd  N )  e.  NN0  ->  ( M  gcd  N )  e.  RR )
3 nn0ge0 10007 . . . . . 6  |-  ( ( M  gcd  N )  e.  NN0  ->  0  <_ 
( M  gcd  N
) )
42, 3absidd 11921 . . . . 5  |-  ( ( M  gcd  N )  e.  NN0  ->  ( abs `  ( M  gcd  N
) )  =  ( M  gcd  N ) )
51, 4syl 15 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  gcd  N ) )  =  ( M  gcd  N ) )
65oveq2d 5890 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  K
)  x.  ( abs `  ( M  gcd  N
) ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
763adant1 973 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  K
)  x.  ( abs `  ( M  gcd  N
) ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
8 zcn 10045 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  CC )
91nn0cnd 10036 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  CC )
10 absmul 11795 . . . 4  |-  ( ( K  e.  CC  /\  ( M  gcd  N )  e.  CC )  -> 
( abs `  ( K  x.  ( M  gcd  N ) ) )  =  ( ( abs `  K )  x.  ( abs `  ( M  gcd  N ) ) ) )
118, 9, 10syl2an 463 . . 3  |-  ( ( K  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  ( K  x.  ( M  gcd  N ) ) )  =  ( ( abs `  K )  x.  ( abs `  ( M  gcd  N ) ) ) )
12113impb 1147 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( K  x.  ( M  gcd  N ) ) )  =  ( ( abs `  K
)  x.  ( abs `  ( M  gcd  N
) ) ) )
13 zcn 10045 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 zcn 10045 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
15 absmul 11795 . . . . . . 7  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( abs `  ( K  x.  M )
)  =  ( ( abs `  K )  x.  ( abs `  M
) ) )
16 absmul 11795 . . . . . . 7  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( abs `  ( K  x.  N )
)  =  ( ( abs `  K )  x.  ( abs `  N
) ) )
1715, 16oveqan12d 5893 . . . . . 6  |-  ( ( ( K  e.  CC  /\  M  e.  CC )  /\  ( K  e.  CC  /\  N  e.  CC ) )  -> 
( ( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( ( abs `  K )  x.  ( abs `  M ) )  gcd  ( ( abs `  K )  x.  ( abs `  N ) ) ) )
18173impdi 1237 . . . . 5  |-  ( ( K  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  (
( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( ( abs `  K )  x.  ( abs `  M ) )  gcd  ( ( abs `  K )  x.  ( abs `  N ) ) ) )
198, 13, 14, 18syl3an 1224 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( ( abs `  K )  x.  ( abs `  M ) )  gcd  ( ( abs `  K )  x.  ( abs `  N ) ) ) )
20 zmulcl 10082 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  x.  M
)  e.  ZZ )
21 zmulcl 10082 . . . . . 6  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  e.  ZZ )
22 gcdabs 12728 . . . . . 6  |-  ( ( ( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ )  ->  ( ( abs `  ( K  x.  M
) )  gcd  ( abs `  ( K  x.  N ) ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N
) ) )
2320, 21, 22syl2an 463 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
24233impdi 1237 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
25 nn0abscl 11813 . . . . 5  |-  ( K  e.  ZZ  ->  ( abs `  K )  e. 
NN0 )
26 nn0abscl 11813 . . . . . 6  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
2726nn0zd 10131 . . . . 5  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  ZZ )
28 nn0abscl 11813 . . . . . 6  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
2928nn0zd 10131 . . . . 5  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
30 mulgcd 12741 . . . . 5  |-  ( ( ( abs `  K
)  e.  NN0  /\  ( abs `  M )  e.  ZZ  /\  ( abs `  N )  e.  ZZ )  ->  (
( ( abs `  K
)  x.  ( abs `  M ) )  gcd  ( ( abs `  K
)  x.  ( abs `  N ) ) )  =  ( ( abs `  K )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) ) )
3125, 27, 29, 30syl3an 1224 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  K
)  x.  ( abs `  M ) )  gcd  ( ( abs `  K
)  x.  ( abs `  N ) ) )  =  ( ( abs `  K )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) ) )
3219, 24, 313eqtr3d 2336 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( ( abs `  K
)  x.  ( ( abs `  M )  gcd  ( abs `  N
) ) ) )
33 gcdabs 12728 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
34333adant1 973 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
3534oveq2d 5890 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  K
)  x.  ( ( abs `  M )  gcd  ( abs `  N
) ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
3632, 35eqtrd 2328 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
377, 12, 363eqtr4rd 2339 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( abs `  ( K  x.  ( M  gcd  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   CCcc 8751    x. cmul 8758   NN0cn0 9981   ZZcz 10040   abscabs 11735    gcd cgcd 12701
This theorem is referenced by:  coprmdvds  12797
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702
  Copyright terms: Public domain W3C validator