MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssexg Unicode version

Theorem abssexg 4211
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
abssexg  |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem abssexg
StepHypRef Expression
1 pwexg 4210 . 2  |-  ( A  e.  V  ->  ~P A  e.  _V )
2 df-pw 3640 . . . 4  |-  ~P A  =  { x  |  x 
C_  A }
32eleq1i 2359 . . 3  |-  ( ~P A  e.  _V  <->  { x  |  x  C_  A }  e.  _V )
4 simpl 443 . . . . 5  |-  ( ( x  C_  A  /\  ph )  ->  x  C_  A
)
54ss2abi 3258 . . . 4  |-  { x  |  ( x  C_  A  /\  ph ) } 
C_  { x  |  x  C_  A }
6 ssexg 4176 . . . 4  |-  ( ( { x  |  ( x  C_  A  /\  ph ) }  C_  { x  |  x  C_  A }  /\  { x  |  x 
C_  A }  e.  _V )  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
75, 6mpan 651 . . 3  |-  ( { x  |  x  C_  A }  e.  _V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
83, 7sylbi 187 . 2  |-  ( ~P A  e.  _V  ->  { x  |  ( x 
C_  A  /\  ph ) }  e.  _V )
91, 8syl 15 1  |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696   {cab 2282   _Vcvv 2801    C_ wss 3165   ~Pcpw 3638
This theorem is referenced by:  pmex  6793  tgval  16709  iscola2  26195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-pow 4204
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-in 3172  df-ss 3179  df-pw 3640
  Copyright terms: Public domain W3C validator