MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssubd Unicode version

Theorem abssubd 11929
Description: Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
abscld.1  |-  ( ph  ->  A  e.  CC )
abssubd.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
abssubd  |-  ( ph  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )

Proof of Theorem abssubd
StepHypRef Expression
1 abscld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 abssubd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 abssub 11804 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
41, 2, 3syl2anc 645 1  |-  ( ph  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1628    e. wcel 1688   ` cfv 5221  (class class class)co 5819   CCcc 8730    - cmin 9032   abscabs 11713
This theorem is referenced by:  rlimuni  12018  climuni  12020  2clim  12040  rlimrecl  12048  subcn2  12062  reccn2  12064  climcau  12138  caucvgrlem  12139  serf0  12147  mertenslem2  12335  xrsxmet  18309  elcncf2  18388  cnllycmp  18448  dvlip  19334  c1lip1  19338  dvfsumrlim2  19373  dvfsum2  19375  ftc1a  19378  aalioulem3  19708  ulmcaulem  19765  ulmcau  19766  ulmbdd  19769  ulmcn  19770  ulmdvlem1  19771  logcnlem4  19986  ssscongptld  20116  chordthmlem3  20125  chordthmlem4  20126  ftalem2  20305  logfacrlim  20457  dchrisumlem3  20634  dchrisum0lem1b  20658  mulog2sumlem2  20678  pntrlog2bndlem3  20722  smcnlem  21262  irrapxlem3  26308  irrapxlem5  26310  pell14qrgt0  26343  acongeq  26469
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-iota 6252  df-riota 6299  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-2 9799  df-cj 11578  df-re 11579  df-im 11580  df-abs 11715
  Copyright terms: Public domain W3C validator