MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssubd Unicode version

Theorem abssubd 12238
Description: Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
abscld.1  |-  ( ph  ->  A  e.  CC )
abssubd.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
abssubd  |-  ( ph  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )

Proof of Theorem abssubd
StepHypRef Expression
1 abscld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 abssubd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 abssub 12113 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
41, 2, 3syl2anc 643 1  |-  ( ph  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   ` cfv 5440  (class class class)co 6067   CCcc 8972    - cmin 9275   abscabs 12022
This theorem is referenced by:  rlimuni  12327  climuni  12329  2clim  12349  rlimrecl  12357  subcn2  12371  reccn2  12373  climcau  12447  caucvgrlem  12449  serf0  12457  mertenslem2  12645  xrsxmet  18823  elcncf2  18903  cnllycmp  18964  dvlip  19860  c1lip1  19864  dvfsumrlim2  19899  dvfsum2  19901  ftc1a  19904  aalioulem3  20234  ulmcaulem  20293  ulmcau  20294  ulmbdd  20297  ulmcn  20298  ulmdvlem1  20299  logcnlem4  20519  ssscongptld  20649  chordthmlem3  20658  chordthmlem4  20659  ftalem2  20839  logfacrlim  20991  dchrisumlem3  21168  dchrisum0lem1b  21192  mulog2sumlem2  21212  pntrlog2bndlem3  21256  smcnlem  22176  lgamucov  24805  irrapxlem3  26819  irrapxlem5  26821  pell14qrgt0  26854  acongeq  26980
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-po 4490  df-so 4491  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-riota 6535  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-div 9662  df-2 10042  df-cj 11887  df-re 11888  df-im 11889  df-abs 12024
  Copyright terms: Public domain W3C validator