MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssubd Unicode version

Theorem abssubd 11865
Description: Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
abscld.1  |-  ( ph  ->  A  e.  CC )
abssubd.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
abssubd  |-  ( ph  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )

Proof of Theorem abssubd
StepHypRef Expression
1 abscld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 abssubd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 abssub 11740 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
41, 2, 3syl2anc 645 1  |-  ( ph  ->  ( abs `  ( A  -  B )
)  =  ( abs `  ( B  -  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   ` cfv 4638  (class class class)co 5757   CCcc 8668    - cmin 8970   abscabs 11649
This theorem is referenced by:  rlimuni  11954  climuni  11956  2clim  11976  rlimrecl  11984  subcn2  11998  reccn2  12000  climcau  12074  caucvgrlem  12075  serf0  12083  mertenslem2  12268  xrsxmet  18242  elcncf2  18321  cnllycmp  18381  dvlip  19267  c1lip1  19271  dvfsumrlim2  19306  dvfsum2  19308  ftc1a  19311  aalioulem3  19641  ulmcaulem  19698  ulmcau  19699  ulmbdd  19702  ulmcn  19703  ulmdvlem1  19704  logcnlem4  19919  ssscongptld  20049  chordthmlem3  20058  chordthmlem4  20059  ftalem2  20238  logfacrlim  20390  dchrisumlem3  20567  dchrisum0lem1b  20591  mulog2sumlem2  20611  pntrlog2bndlem3  20655  smcnlem  21195  irrapxlem3  26241  irrapxlem5  26243  pell14qrgt0  26276  acongeq  26402
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-po 4251  df-so 4252  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-2 9737  df-cj 11514  df-re 11515  df-im 11516  df-abs 11651
  Copyright terms: Public domain W3C validator