MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abstri Unicode version

Theorem abstri 11810
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abstri  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) ) )

Proof of Theorem abstri
StepHypRef Expression
1 2re 9811 . . . . . 6  |-  2  e.  RR
21a1i 10 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  RR )
3 simpl 443 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
4 simpr 447 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54cjcld 11677 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  B
)  e.  CC )
63, 5mulcld 8851 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
* `  B )
)  e.  CC )
76recld 11675 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  e.  RR )
82, 7remulcld 8859 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  e.  RR )
9 abscl 11759 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
103, 9syl 15 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  RR )
11 abscl 11759 . . . . . . 7  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
124, 11syl 15 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  RR )
1310, 12remulcld 8859 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  x.  ( abs `  B ) )  e.  RR )
142, 13remulcld 8859 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) )  e.  RR )
1510resqcld 11267 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) ^ 2 )  e.  RR )
1612resqcld 11267 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
) ^ 2 )  e.  RR )
1715, 16readdcld 8858 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  e.  RR )
18 releabs 11801 . . . . . . 7  |-  ( ( A  x.  ( * `
 B ) )  e.  CC  ->  (
Re `  ( A  x.  ( * `  B
) ) )  <_ 
( abs `  ( A  x.  ( * `  B ) ) ) )
196, 18syl 15 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  <_  ( abs `  ( A  x.  ( * `  B ) ) ) )
20 absmul 11775 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  ( * `  B ) ) ) )
213, 5, 20syl2anc 642 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  ( * `  B ) ) ) )
22 abscj 11760 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( abs `  ( * `  B ) )  =  ( abs `  B
) )
234, 22syl 15 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
* `  B )
)  =  ( abs `  B ) )
2423oveq2d 5836 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  x.  ( abs `  ( * `  B
) ) )  =  ( ( abs `  A
)  x.  ( abs `  B ) ) )
2521, 24eqtrd 2316 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  B ) ) )
2619, 25breqtrd 4048 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  <_  ( ( abs `  A )  x.  ( abs `  B ) ) )
27 2rp 10355 . . . . . . 7  |-  2  e.  RR+
2827a1i 10 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  RR+ )
297, 13, 28lemul2d 10426 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  (
* `  B )
) )  <_  (
( abs `  A
)  x.  ( abs `  B ) )  <->  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) )  <_ 
( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) ) ) )
3026, 29mpbid 201 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  <_  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )
318, 14, 17, 30leadd2dd 9383 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B
) ^ 2 ) )  +  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) ) )  <_  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
32 sqabsadd 11763 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( A  x.  ( * `  B
) ) ) ) ) )
3310recnd 8857 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  CC )
3412recnd 8857 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  CC )
35 binom2 11214 . . . . 5  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  B )  e.  CC )  -> 
( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) ) )
3633, 34, 35syl2anc 642 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) ) )
3715recnd 8857 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) ^ 2 )  e.  CC )
3814recnd 8857 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) )  e.  CC )
3916recnd 8857 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
) ^ 2 )  e.  CC )
4037, 38, 39add32d 9030 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
4136, 40eqtrd 2316 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
4231, 32, 413brtr4d 4054 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
) ^ 2 )  <_  ( ( ( abs `  A )  +  ( abs `  B
) ) ^ 2 ) )
43 addcl 8815 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
44 abscl 11759 . . . 4  |-  ( ( A  +  B )  e.  CC  ->  ( abs `  ( A  +  B ) )  e.  RR )
4543, 44syl 15 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  e.  RR )
4610, 12readdcld 8858 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  +  ( abs `  B ) )  e.  RR )
47 absge0 11768 . . . 4  |-  ( ( A  +  B )  e.  CC  ->  0  <_  ( abs `  ( A  +  B )
) )
4843, 47syl 15 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  ( A  +  B
) ) )
49 absge0 11768 . . . . 5  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
503, 49syl 15 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  A ) )
51 absge0 11768 . . . . 5  |-  ( B  e.  CC  ->  0  <_  ( abs `  B
) )
524, 51syl 15 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  B ) )
5310, 12, 50, 52addge0d 9344 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( ( abs `  A )  +  ( abs `  B
) ) )
5445, 46, 48, 53le2sqd 11276 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) )  <->  ( ( abs `  ( A  +  B ) ) ^
2 )  <_  (
( ( abs `  A
)  +  ( abs `  B ) ) ^
2 ) ) )
5542, 54mpbird 223 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733    + caddc 8736    x. cmul 8738    <_ cle 8864   2c2 9791   RR+crp 10350   ^cexp 11100   *ccj 11577   Recre 11578   abscabs 11715
This theorem is referenced by:  abs3dif  11811  abs2dif2  11813  abstrii  11887  abstrid  11934  absabv  16425  cnnv  21239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-seq 11043  df-exp 11101  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717
  Copyright terms: Public domain W3C validator