MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abstri Unicode version

Theorem abstri 11691
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abstri  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) ) )

Proof of Theorem abstri
StepHypRef Expression
1 2re 9695 . . . . . 6  |-  2  e.  RR
21a1i 12 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  RR )
3 simpl 445 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
4 simpr 449 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54cjcld 11558 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  B
)  e.  CC )
63, 5mulcld 8735 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
* `  B )
)  e.  CC )
76recld 11556 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  e.  RR )
82, 7remulcld 8743 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  e.  RR )
9 abscl 11640 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
103, 9syl 17 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  RR )
11 abscl 11640 . . . . . . 7  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
124, 11syl 17 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  RR )
1310, 12remulcld 8743 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  x.  ( abs `  B ) )  e.  RR )
142, 13remulcld 8743 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) )  e.  RR )
1510resqcld 11149 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) ^ 2 )  e.  RR )
1612resqcld 11149 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
) ^ 2 )  e.  RR )
1715, 16readdcld 8742 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  e.  RR )
18 releabs 11682 . . . . . . 7  |-  ( ( A  x.  ( * `
 B ) )  e.  CC  ->  (
Re `  ( A  x.  ( * `  B
) ) )  <_ 
( abs `  ( A  x.  ( * `  B ) ) ) )
196, 18syl 17 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  <_  ( abs `  ( A  x.  ( * `  B ) ) ) )
20 absmul 11656 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  ( * `  B ) ) ) )
213, 5, 20syl2anc 645 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  ( * `  B ) ) ) )
22 abscj 11641 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( abs `  ( * `  B ) )  =  ( abs `  B
) )
234, 22syl 17 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  (
* `  B )
)  =  ( abs `  B ) )
2423oveq2d 5726 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  x.  ( abs `  ( * `  B
) ) )  =  ( ( abs `  A
)  x.  ( abs `  B ) ) )
2521, 24eqtrd 2285 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  ( * `  B ) ) )  =  ( ( abs `  A )  x.  ( abs `  B ) ) )
2619, 25breqtrd 3944 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  <_  ( ( abs `  A )  x.  ( abs `  B ) ) )
27 2rp 10238 . . . . . . 7  |-  2  e.  RR+
2827a1i 12 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  RR+ )
297, 13, 28lemul2d 10309 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  (
* `  B )
) )  <_  (
( abs `  A
)  x.  ( abs `  B ) )  <->  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) )  <_ 
( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) ) ) )
3026, 29mpbid 203 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
Re `  ( A  x.  ( * `  B
) ) ) )  <_  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )
318, 14, 17, 30leadd2dd 9267 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B
) ^ 2 ) )  +  ( 2  x.  ( Re `  ( A  x.  (
* `  B )
) ) ) )  <_  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
32 sqabsadd 11644 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( A  x.  ( * `  B
) ) ) ) ) )
3310recnd 8741 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  A
)  e.  CC )
3412recnd 8741 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  B
)  e.  CC )
35 binom2 11096 . . . . 5  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  B )  e.  CC )  -> 
( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) ) )
3633, 34, 35syl2anc 645 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( 2  x.  ( ( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) ) )
3715recnd 8741 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) ^ 2 )  e.  CC )
3814recnd 8741 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) )  e.  CC )
3916recnd 8741 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  B
) ^ 2 )  e.  CC )
4037, 38, 39add32d 8914 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( abs `  A ) ^ 2 )  +  ( 2  x.  (
( abs `  A
)  x.  ( abs `  B ) ) ) )  +  ( ( abs `  B ) ^ 2 ) )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
4136, 40eqtrd 2285 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A )  +  ( abs `  B ) ) ^ 2 )  =  ( ( ( ( abs `  A
) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( ( abs `  A )  x.  ( abs `  B
) ) ) ) )
4231, 32, 413brtr4d 3950 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
) ^ 2 )  <_  ( ( ( abs `  A )  +  ( abs `  B
) ) ^ 2 ) )
43 addcl 8699 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
44 abscl 11640 . . . 4  |-  ( ( A  +  B )  e.  CC  ->  ( abs `  ( A  +  B ) )  e.  RR )
4543, 44syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  e.  RR )
4610, 12readdcld 8742 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
)  +  ( abs `  B ) )  e.  RR )
47 absge0 11649 . . . 4  |-  ( ( A  +  B )  e.  CC  ->  0  <_  ( abs `  ( A  +  B )
) )
4843, 47syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  ( A  +  B
) ) )
49 absge0 11649 . . . . 5  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
503, 49syl 17 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  A ) )
51 absge0 11649 . . . . 5  |-  ( B  e.  CC  ->  0  <_  ( abs `  B
) )
524, 51syl 17 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( abs `  B ) )
5310, 12, 50, 52addge0d 9228 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( ( abs `  A )  +  ( abs `  B
) ) )
5445, 46, 48, 53le2sqd 11158 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) )  <->  ( ( abs `  ( A  +  B ) ) ^
2 )  <_  (
( ( abs `  A
)  +  ( abs `  B ) ) ^
2 ) ) )
5542, 54mpbird 225 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  +  B )
)  <_  ( ( abs `  A )  +  ( abs `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617    + caddc 8620    x. cmul 8622    <_ cle 8748   2c2 9675   RR+crp 10233   ^cexp 10982   *ccj 11458   Recre 11459   abscabs 11596
This theorem is referenced by:  abs3dif  11692  abs2dif2  11694  abstrii  11768  abstrid  11815  absabv  16261  cnnv  21075
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598
  Copyright terms: Public domain W3C validator