MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcxp Unicode version

Theorem abvcxp 20760
Description: Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvcxp.a  |-  A  =  (AbsVal `  R )
abvcxp.b  |-  B  =  ( Base `  R
)
abvcxp.f  |-  G  =  ( x  e.  B  |->  ( ( F `  x )  ^ c  S ) )
Assertion
Ref Expression
abvcxp  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  G  e.  A
)
Distinct variable groups:    x, A    x, B    x, F    x, R    x, S
Dummy variables  y  z are mutually distinct and distinct from all other variables.
Allowed substitution group:    G( x)

Proof of Theorem abvcxp
StepHypRef Expression
1 abvcxp.a . . 3  |-  A  =  (AbsVal `  R )
21a1i 12 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  A  =  (AbsVal `  R ) )
3 abvcxp.b . . 3  |-  B  =  ( Base `  R
)
43a1i 12 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  B  =  (
Base `  R )
)
5 eqidd 2287 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( +g  `  R
)  =  ( +g  `  R ) )
6 eqidd 2287 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( .r `  R )  =  ( .r `  R ) )
7 eqidd 2287 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( 0g `  R )  =  ( 0g `  R ) )
81abvrcl 15582 . . 3  |-  ( F  e.  A  ->  R  e.  Ring )
98adantr 453 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  R  e.  Ring )
101, 3abvcl 15585 . . . . 5  |-  ( ( F  e.  A  /\  x  e.  B )  ->  ( F `  x
)  e.  RR )
1110adantlr 697 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  ( F `  x )  e.  RR )
121, 3abvge0 15586 . . . . 5  |-  ( ( F  e.  A  /\  x  e.  B )  ->  0  <_  ( F `  x ) )
1312adantlr 697 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  0  <_  ( F `  x
) )
14 simpr 449 . . . . . . 7  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  e.  ( 0 (,] 1 ) )
15 0xr 8875 . . . . . . . 8  |-  0  e.  RR*
16 1re 8834 . . . . . . . 8  |-  1  e.  RR
17 elioc2 10709 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( S  e.  ( 0 (,] 1 )  <->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) ) )
1815, 16, 17mp2an 655 . . . . . . 7  |-  ( S  e.  ( 0 (,] 1 )  <->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) )
1914, 18sylib 190 . . . . . 6  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) )
2019simp1d 969 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  e.  RR )
2120adantr 453 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  S  e.  RR )
2211, 13, 21recxpcld 20066 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  (
( F `  x
)  ^ c  S
)  e.  RR )
23 abvcxp.f . . 3  |-  G  =  ( x  e.  B  |->  ( ( F `  x )  ^ c  S ) )
2422, 23fmptd 5647 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  G : B --> RR )
25 eqid 2286 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
263, 25rng0cl 15358 . . . . 5  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  B )
279, 26syl 17 . . . 4  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( 0g `  R )  e.  B
)
28 fveq2 5487 . . . . . 6  |-  ( x  =  ( 0g `  R )  ->  ( F `  x )  =  ( F `  ( 0g `  R ) ) )
2928oveq1d 5836 . . . . 5  |-  ( x  =  ( 0g `  R )  ->  (
( F `  x
)  ^ c  S
)  =  ( ( F `  ( 0g
`  R ) )  ^ c  S ) )
30 ovex 5846 . . . . 5  |-  ( ( F `  ( 0g
`  R ) )  ^ c  S )  e.  _V
3129, 23, 30fvmpt 5565 . . . 4  |-  ( ( 0g `  R )  e.  B  ->  ( G `  ( 0g `  R ) )  =  ( ( F `  ( 0g `  R ) )  ^ c  S
) )
3227, 31syl 17 . . 3  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( G `  ( 0g `  R ) )  =  ( ( F `  ( 0g
`  R ) )  ^ c  S ) )
331, 25abv0 15592 . . . . . 6  |-  ( F  e.  A  ->  ( F `  ( 0g `  R ) )  =  0 )
3433adantr 453 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( F `  ( 0g `  R ) )  =  0 )
3534oveq1d 5836 . . . 4  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 ( 0g `  R ) )  ^ c  S )  =  ( 0  ^ c  S
) )
3620recnd 8858 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  e.  CC )
3719simp2d 970 . . . . . 6  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  0  <  S
)
3837gt0ne0d 9334 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  =/=  0
)
3936, 380cxpd 20053 . . . 4  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( 0  ^ c  S )  =  0 )
4035, 39eqtrd 2318 . . 3  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 ( 0g `  R ) )  ^ c  S )  =  0 )
4132, 40eqtrd 2318 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( G `  ( 0g `  R ) )  =  0 )
42 simp1l 981 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  F  e.  A )
43 simp2 958 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  y  e.  B )
441, 3abvcl 15585 . . . . . . 7  |-  ( ( F  e.  A  /\  y  e.  B )  ->  ( F `  y
)  e.  RR )
4542, 43, 44syl2anc 644 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  ( F `  y )  e.  RR )
461, 3, 25abvgt0 15589 . . . . . . 7  |-  ( ( F  e.  A  /\  y  e.  B  /\  y  =/=  ( 0g `  R ) )  -> 
0  <  ( F `  y ) )
47463adant1r 1177 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  0  <  ( F `  y
) )
4845, 47elrpd 10385 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  ( F `  y )  e.  RR+ )
49203ad2ant1 978 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  S  e.  RR )
5048, 49rpcxpcld 20073 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  (
( F `  y
)  ^ c  S
)  e.  RR+ )
5150rpgt0d 10390 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  0  <  ( ( F `  y )  ^ c  S ) )
52 fveq2 5487 . . . . . 6  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
5352oveq1d 5836 . . . . 5  |-  ( x  =  y  ->  (
( F `  x
)  ^ c  S
)  =  ( ( F `  y )  ^ c  S ) )
54 ovex 5846 . . . . 5  |-  ( ( F `  y )  ^ c  S )  e.  _V
5553, 23, 54fvmpt 5565 . . . 4  |-  ( y  e.  B  ->  ( G `  y )  =  ( ( F `
 y )  ^ c  S ) )
5643, 55syl 17 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  ( G `  y )  =  ( ( F `
 y )  ^ c  S ) )
5751, 56breqtrrd 4052 . 2  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  0  <  ( G `  y
) )
58 simp1l 981 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  F  e.  A
)
59 simp2l 983 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  y  e.  B
)
60 simp3l 985 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  z  e.  B
)
61 eqid 2286 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
621, 3, 61abvmul 15590 . . . . . 6  |-  ( ( F  e.  A  /\  y  e.  B  /\  z  e.  B )  ->  ( F `  (
y ( .r `  R ) z ) )  =  ( ( F `  y )  x.  ( F `  z ) ) )
6358, 59, 60, 62syl3anc 1184 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  ( y ( .r
`  R ) z ) )  =  ( ( F `  y
)  x.  ( F `
 z ) ) )
6463oveq1d 5836 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( .r `  R ) z ) )  ^ c  S )  =  ( ( ( F `  y )  x.  ( F `  z )
)  ^ c  S
) )
6558, 59, 44syl2anc 644 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  y )  e.  RR )
661, 3abvge0 15586 . . . . . 6  |-  ( ( F  e.  A  /\  y  e.  B )  ->  0  <_  ( F `  y ) )
6758, 59, 66syl2anc 644 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  ( F `  y )
)
681, 3abvcl 15585 . . . . . 6  |-  ( ( F  e.  A  /\  z  e.  B )  ->  ( F `  z
)  e.  RR )
6958, 60, 68syl2anc 644 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  z )  e.  RR )
701, 3abvge0 15586 . . . . . 6  |-  ( ( F  e.  A  /\  z  e.  B )  ->  0  <_  ( F `  z ) )
7158, 60, 70syl2anc 644 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  ( F `  z )
)
72363ad2ant1 978 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  e.  CC )
7365, 67, 69, 71, 72mulcxpd 20071 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  x.  ( F `  z ) )  ^ c  S )  =  ( ( ( F `  y )  ^ c  S )  x.  (
( F `  z
)  ^ c  S
) ) )
7464, 73eqtrd 2318 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( .r `  R ) z ) )  ^ c  S )  =  ( ( ( F `  y )  ^ c  S )  x.  (
( F `  z
)  ^ c  S
) ) )
7593ad2ant1 978 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  R  e.  Ring )
763, 61rngcl 15350 . . . . 5  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  z  e.  B )  ->  (
y ( .r `  R ) z )  e.  B )
7775, 59, 60, 76syl3anc 1184 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( y ( .r `  R ) z )  e.  B
)
78 fveq2 5487 . . . . . 6  |-  ( x  =  ( y ( .r `  R ) z )  ->  ( F `  x )  =  ( F `  ( y ( .r
`  R ) z ) ) )
7978oveq1d 5836 . . . . 5  |-  ( x  =  ( y ( .r `  R ) z )  ->  (
( F `  x
)  ^ c  S
)  =  ( ( F `  ( y ( .r `  R
) z ) )  ^ c  S ) )
80 ovex 5846 . . . . 5  |-  ( ( F `  ( y ( .r `  R
) z ) )  ^ c  S )  e.  _V
8179, 23, 80fvmpt 5565 . . . 4  |-  ( ( y ( .r `  R ) z )  e.  B  ->  ( G `  ( y
( .r `  R
) z ) )  =  ( ( F `
 ( y ( .r `  R ) z ) )  ^ c  S ) )
8277, 81syl 17 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( .r
`  R ) z ) )  =  ( ( F `  (
y ( .r `  R ) z ) )  ^ c  S
) )
8359, 55syl 17 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  y )  =  ( ( F `  y
)  ^ c  S
) )
84 fveq2 5487 . . . . . . 7  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
8584oveq1d 5836 . . . . . 6  |-  ( x  =  z  ->  (
( F `  x
)  ^ c  S
)  =  ( ( F `  z )  ^ c  S ) )
86 ovex 5846 . . . . . 6  |-  ( ( F `  z )  ^ c  S )  e.  _V
8785, 23, 86fvmpt 5565 . . . . 5  |-  ( z  e.  B  ->  ( G `  z )  =  ( ( F `
 z )  ^ c  S ) )
8860, 87syl 17 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  z )  =  ( ( F `  z
)  ^ c  S
) )
8983, 88oveq12d 5839 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( G `
 y )  x.  ( G `  z
) )  =  ( ( ( F `  y )  ^ c  S )  x.  (
( F `  z
)  ^ c  S
) ) )
9074, 82, 893eqtr4d 2328 . 2  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( .r
`  R ) z ) )  =  ( ( G `  y
)  x.  ( G `
 z ) ) )
91 rnggrp 15342 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
9275, 91syl 17 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  R  e.  Grp )
93 eqid 2286 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
943, 93grpcl 14491 . . . . . . 7  |-  ( ( R  e.  Grp  /\  y  e.  B  /\  z  e.  B )  ->  ( y ( +g  `  R ) z )  e.  B )
9592, 59, 60, 94syl3anc 1184 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( y ( +g  `  R ) z )  e.  B
)
961, 3abvcl 15585 . . . . . 6  |-  ( ( F  e.  A  /\  ( y ( +g  `  R ) z )  e.  B )  -> 
( F `  (
y ( +g  `  R
) z ) )  e.  RR )
9758, 95, 96syl2anc 644 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  ( y ( +g  `  R ) z ) )  e.  RR )
981, 3abvge0 15586 . . . . . 6  |-  ( ( F  e.  A  /\  ( y ( +g  `  R ) z )  e.  B )  -> 
0  <_  ( F `  ( y ( +g  `  R ) z ) ) )
9958, 95, 98syl2anc 644 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  ( F `  ( y
( +g  `  R ) z ) ) )
100193ad2ant1 978 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) )
101100simp1d 969 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  e.  RR )
10297, 99, 101recxpcld 20066 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^ c  S )  e.  RR )
10365, 69readdcld 8859 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 y )  +  ( F `  z
) )  e.  RR )
10465, 69, 67, 71addge0d 9345 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  (
( F `  y
)  +  ( F `
 z ) ) )
105103, 104, 101recxpcld 20066 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  +  ( F `  z ) )  ^ c  S )  e.  RR )
10665, 67, 101recxpcld 20066 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 y )  ^ c  S )  e.  RR )
10769, 71, 101recxpcld 20066 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 z )  ^ c  S )  e.  RR )
108106, 107readdcld 8859 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  ^ c  S )  +  ( ( F `
 z )  ^ c  S ) )  e.  RR )
1091, 3, 93abvtri 15591 . . . . . 6  |-  ( ( F  e.  A  /\  y  e.  B  /\  z  e.  B )  ->  ( F `  (
y ( +g  `  R
) z ) )  <_  ( ( F `
 y )  +  ( F `  z
) ) )
11058, 59, 60, 109syl3anc 1184 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  ( y ( +g  `  R ) z ) )  <_  ( ( F `  y )  +  ( F `  z ) ) )
111100simp2d 970 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <  S
)
112101, 111elrpd 10385 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  e.  RR+ )
11397, 99, 103, 104, 112cxple2d 20070 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  <_ 
( ( F `  y )  +  ( F `  z ) )  <->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^ c  S )  <_  (
( ( F `  y )  +  ( F `  z ) )  ^ c  S
) ) )
114110, 113mpbid 203 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^ c  S )  <_  (
( ( F `  y )  +  ( F `  z ) )  ^ c  S
) )
115100simp3d 971 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  <_  1
)
11665, 67, 69, 71, 112, 115cxpaddle 20088 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  +  ( F `  z ) )  ^ c  S )  <_  (
( ( F `  y )  ^ c  S )  +  ( ( F `  z
)  ^ c  S
) ) )
117102, 105, 108, 114, 116letrd 8970 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^ c  S )  <_  (
( ( F `  y )  ^ c  S )  +  ( ( F `  z
)  ^ c  S
) ) )
118 fveq2 5487 . . . . . 6  |-  ( x  =  ( y ( +g  `  R ) z )  ->  ( F `  x )  =  ( F `  ( y ( +g  `  R ) z ) ) )
119118oveq1d 5836 . . . . 5  |-  ( x  =  ( y ( +g  `  R ) z )  ->  (
( F `  x
)  ^ c  S
)  =  ( ( F `  ( y ( +g  `  R
) z ) )  ^ c  S ) )
120 ovex 5846 . . . . 5  |-  ( ( F `  ( y ( +g  `  R
) z ) )  ^ c  S )  e.  _V
121119, 23, 120fvmpt 5565 . . . 4  |-  ( ( y ( +g  `  R
) z )  e.  B  ->  ( G `  ( y ( +g  `  R ) z ) )  =  ( ( F `  ( y ( +g  `  R
) z ) )  ^ c  S ) )
12295, 121syl 17 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( +g  `  R ) z ) )  =  ( ( F `  ( y ( +g  `  R
) z ) )  ^ c  S ) )
12383, 88oveq12d 5839 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( G `
 y )  +  ( G `  z
) )  =  ( ( ( F `  y )  ^ c  S )  +  ( ( F `  z
)  ^ c  S
) ) )
124117, 122, 1233brtr4d 4056 . 2  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( +g  `  R ) z ) )  <_  ( ( G `  y )  +  ( G `  z ) ) )
1252, 4, 5, 6, 7, 9, 24, 41, 57, 90, 124isabvd 15581 1  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  G  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1625    e. wcel 1687    =/= wne 2449   class class class wbr 4026    e. cmpt 4080   ` cfv 5223  (class class class)co 5821   CCcc 8732   RRcr 8733   0cc0 8734   1c1 8735    + caddc 8737    x. cmul 8739   RR*cxr 8863    < clt 8864    <_ cle 8865   (,]cioc 10653   Basecbs 13144   +g cplusg 13204   .rcmulr 13205   0gc0g 13396   Grpcgrp 14358   Ringcrg 15333  AbsValcabv 15577    ^ c ccxp 19909
This theorem is referenced by:  ostth2  20782  ostth  20784
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-rep 4134  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-inf2 7339  ax-cnex 8790  ax-resscn 8791  ax-1cn 8792  ax-icn 8793  ax-addcl 8794  ax-addrcl 8795  ax-mulcl 8796  ax-mulrcl 8797  ax-mulcom 8798  ax-addass 8799  ax-mulass 8800  ax-distr 8801  ax-i2m1 8802  ax-1ne0 8803  ax-1rid 8804  ax-rnegex 8805  ax-rrecex 8806  ax-cnre 8807  ax-pre-lttri 8808  ax-pre-lttrn 8809  ax-pre-ltadd 8810  ax-pre-mulgt0 8811  ax-pre-sup 8812  ax-addf 8813  ax-mulf 8814
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-int 3866  df-iun 3910  df-iin 3911  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-se 4354  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-isom 5232  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-of 6041  df-1st 6085  df-2nd 6086  df-iota 6254  df-riota 6301  df-recs 6385  df-rdg 6420  df-1o 6476  df-2o 6477  df-oadd 6480  df-er 6657  df-map 6771  df-pm 6772  df-ixp 6815  df-en 6861  df-dom 6862  df-sdom 6863  df-fin 6864  df-fi 7162  df-sup 7191  df-oi 7222  df-card 7569  df-cda 7791  df-pnf 8866  df-mnf 8867  df-xr 8868  df-ltxr 8869  df-le 8870  df-sub 9036  df-neg 9037  df-div 9421  df-nn 9744  df-2 9801  df-3 9802  df-4 9803  df-5 9804  df-6 9805  df-7 9806  df-8 9807  df-9 9808  df-10 9809  df-n0 9963  df-z 10022  df-dec 10122  df-uz 10228  df-q 10314  df-rp 10352  df-xneg 10449  df-xadd 10450  df-xmul 10451  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-mod 10970  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-shft 11558  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959  df-sum 12155  df-ef 12345  df-sin 12347  df-cos 12348  df-pi 12350  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-submnd 14412  df-grp 14485  df-minusg 14486  df-mulg 14488  df-cntz 14789  df-cmn 15087  df-mgp 15322  df-rng 15336  df-abv 15578  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-lp 16864  df-perf 16865  df-cn 16953  df-cnp 16954  df-haus 17039  df-tx 17253  df-hmeo 17442  df-fbas 17516  df-fg 17517  df-fil 17537  df-fm 17629  df-flim 17630  df-flf 17631  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-limc 19212  df-dv 19213  df-log 19910  df-cxp 19911
  Copyright terms: Public domain W3C validator