MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdiv Unicode version

Theorem abvdiv 15701
Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abvneg.b  |-  B  =  ( Base `  R
)
abvrec.z  |-  .0.  =  ( 0g `  R )
abvdiv.p  |-  ./  =  (/r
`  R )
Assertion
Ref Expression
abvdiv  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X  ./  Y ) )  =  ( ( F `  X )  /  ( F `  Y )
) )

Proof of Theorem abvdiv
StepHypRef Expression
1 simplr 731 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  F  e.  A )
2 simpr1 961 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  X  e.  B )
3 simpll 730 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  R  e.  DivRing )
4 simpr2 962 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  Y  e.  B )
5 simpr3 963 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  Y  =/=  .0.  )
6 abvneg.b . . . . . 6  |-  B  =  ( Base `  R
)
7 abvrec.z . . . . . 6  |-  .0.  =  ( 0g `  R )
8 eqid 2358 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
96, 7, 8drnginvrcl 15628 . . . . 5  |-  ( ( R  e.  DivRing  /\  Y  e.  B  /\  Y  =/= 
.0.  )  ->  (
( invr `  R ) `  Y )  e.  B
)
103, 4, 5, 9syl3anc 1182 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  (
( invr `  R ) `  Y )  e.  B
)
11 abv0.a . . . . 5  |-  A  =  (AbsVal `  R )
12 eqid 2358 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
1311, 6, 12abvmul 15693 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B  /\  ( ( invr `  R
) `  Y )  e.  B )  ->  ( F `  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  ( F `  ( ( invr `  R ) `  Y ) ) ) )
141, 2, 10, 13syl3anc 1182 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  ( F `  ( ( invr `  R ) `  Y ) ) ) )
1511, 6, 7, 8abvrec 15700 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( ( invr `  R ) `  Y ) )  =  ( 1  /  ( F `  Y )
) )
16153adantr1 1114 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( ( invr `  R ) `  Y ) )  =  ( 1  /  ( F `  Y )
) )
1716oveq2d 5961 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  (
( F `  X
)  x.  ( F `
 ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  (
1  /  ( F `
 Y ) ) ) )
1814, 17eqtrd 2390 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  (
1  /  ( F `
 Y ) ) ) )
19 eqid 2358 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
206, 19, 7drngunit 15616 . . . . . 6  |-  ( R  e.  DivRing  ->  ( Y  e.  (Unit `  R )  <->  ( Y  e.  B  /\  Y  =/=  .0.  ) ) )
213, 20syl 15 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( Y  e.  (Unit `  R
)  <->  ( Y  e.  B  /\  Y  =/= 
.0.  ) ) )
224, 5, 21mpbir2and 888 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  Y  e.  (Unit `  R )
)
23 abvdiv.p . . . . 5  |-  ./  =  (/r
`  R )
246, 12, 19, 8, 23dvrval 15566 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  (Unit `  R
) )  ->  ( X  ./  Y )  =  ( X ( .r
`  R ) ( ( invr `  R
) `  Y )
) )
252, 22, 24syl2anc 642 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( X  ./  Y )  =  ( X ( .r
`  R ) ( ( invr `  R
) `  Y )
) )
2625fveq2d 5612 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X  ./  Y ) )  =  ( F `  ( X ( .r `  R ) ( (
invr `  R ) `  Y ) ) ) )
2711, 6abvcl 15688 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  RR )
281, 2, 27syl2anc 642 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  X )  e.  RR )
2928recnd 8951 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  X )  e.  CC )
3011, 6abvcl 15688 . . . . 5  |-  ( ( F  e.  A  /\  Y  e.  B )  ->  ( F `  Y
)  e.  RR )
311, 4, 30syl2anc 642 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  Y )  e.  RR )
3231recnd 8951 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  Y )  e.  CC )
3311, 6, 7abvne0 15691 . . . 4  |-  ( ( F  e.  A  /\  Y  e.  B  /\  Y  =/=  .0.  )  -> 
( F `  Y
)  =/=  0 )
341, 4, 5, 33syl3anc 1182 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  Y )  =/=  0 )
3529, 32, 34divrecd 9629 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  (
( F `  X
)  /  ( F `
 Y ) )  =  ( ( F `
 X )  x.  ( 1  /  ( F `  Y )
) ) )
3618, 26, 353eqtr4d 2400 1  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X  ./  Y ) )  =  ( ( F `  X )  /  ( F `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   ` cfv 5337  (class class class)co 5945   RRcr 8826   0cc0 8827   1c1 8828    x. cmul 8832    / cdiv 9513   Basecbs 13245   .rcmulr 13306   0gc0g 13499  Unitcui 15520   invrcinvr 15552  /rcdvr 15563   DivRingcdr 15611  AbsValcabv 15680
This theorem is referenced by:  ostthlem1  20888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-tpos 6321  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-ico 10754  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-0g 13503  df-mnd 14466  df-grp 14588  df-minusg 14589  df-mgp 15425  df-rng 15439  df-ur 15441  df-oppr 15504  df-dvdsr 15522  df-unit 15523  df-invr 15553  df-dvr 15564  df-drng 15613  df-abv 15681
  Copyright terms: Public domain W3C validator