MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvge0 Structured version   Unicode version

Theorem abvge0 15915
Description: The absolute value of a number is greater or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a  |-  A  =  (AbsVal `  R )
abvf.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
abvge0  |-  ( ( F  e.  A  /\  X  e.  B )  ->  0  <_  ( F `  X ) )

Proof of Theorem abvge0
StepHypRef Expression
1 abvf.a . . . 4  |-  A  =  (AbsVal `  R )
2 abvf.b . . . 4  |-  B  =  ( Base `  R
)
31, 2abvfge0 15912 . . 3  |-  ( F  e.  A  ->  F : B --> ( 0 [,) 
+oo ) )
43ffvelrnda 5872 . 2  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  ( 0 [,)  +oo ) )
5 elrege0 11009 . . 3  |-  ( ( F `  X )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  X )  e.  RR  /\  0  <_ 
( F `  X
) ) )
65simprbi 452 . 2  |-  ( ( F `  X )  e.  ( 0 [,) 
+oo )  ->  0  <_  ( F `  X
) )
74, 6syl 16 1  |-  ( ( F  e.  A  /\  X  e.  B )  ->  0  <_  ( F `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   RRcr 8991   0cc0 8992    +oocpnf 9119    <_ cle 9123   [,)cico 10920   Basecbs 13471  AbsValcabv 15906
This theorem is referenced by:  abvgt0  15918  abvneg  15924  abvcxp  21311  ostth2lem2  21330
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-i2m1 9060  ax-1ne0 9061  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-po 4505  df-so 4506  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-ico 10924  df-abv 15907
  Copyright terms: Public domain W3C validator