MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvres Unicode version

Theorem abvres 15703
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
abvres.a  |-  A  =  (AbsVal `  R )
abvres.s  |-  S  =  ( Rs  C )
abvres.b  |-  B  =  (AbsVal `  S )
Assertion
Ref Expression
abvres  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F  |`  C )  e.  B )

Proof of Theorem abvres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvres.b . . 3  |-  B  =  (AbsVal `  S )
21a1i 10 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  B  =  (AbsVal `  S )
)
3 abvres.s . . . 4  |-  S  =  ( Rs  C )
43subrgbas 15653 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  C  =  ( Base `  S )
)
54adantl 452 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  C  =  ( Base `  S
) )
6 eqid 2358 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
73, 6ressplusg 13347 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  ( +g  `  R )  =  ( +g  `  S ) )
87adantl 452 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( +g  `  R )  =  ( +g  `  S
) )
9 eqid 2358 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
103, 9ressmulr 13358 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
1110adantl 452 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( .r `  R )  =  ( .r `  S
) )
12 subrgsubg 15650 . . . 4  |-  ( C  e.  (SubRing `  R
)  ->  C  e.  (SubGrp `  R ) )
1312adantl 452 . . 3  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  C  e.  (SubGrp `  R )
)
14 eqid 2358 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
153, 14subg0 14726 . . 3  |-  ( C  e.  (SubGrp `  R
)  ->  ( 0g `  R )  =  ( 0g `  S ) )
1613, 15syl 15 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( 0g `  R )  =  ( 0g `  S
) )
173subrgrng 15647 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  S  e.  Ring )
1817adantl 452 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  S  e.  Ring )
19 abvres.a . . . 4  |-  A  =  (AbsVal `  R )
20 eqid 2358 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2119, 20abvf 15687 . . 3  |-  ( F  e.  A  ->  F : ( Base `  R
) --> RR )
2220subrgss 15645 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  C  C_  ( Base `  R ) )
23 fssres 5491 . . 3  |-  ( ( F : ( Base `  R ) --> RR  /\  C  C_  ( Base `  R
) )  ->  ( F  |`  C ) : C --> RR )
2421, 22, 23syl2an 463 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F  |`  C ) : C --> RR )
2514subg0cl 14728 . . . 4  |-  ( C  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  C
)
26 fvres 5625 . . . 4  |-  ( ( 0g `  R )  e.  C  ->  (
( F  |`  C ) `
 ( 0g `  R ) )  =  ( F `  ( 0g `  R ) ) )
2713, 25, 263syl 18 . . 3  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  (
( F  |`  C ) `
 ( 0g `  R ) )  =  ( F `  ( 0g `  R ) ) )
2819, 14abv0 15695 . . . 4  |-  ( F  e.  A  ->  ( F `  ( 0g `  R ) )  =  0 )
2928adantr 451 . . 3  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F `  ( 0g `  R ) )  =  0 )
3027, 29eqtrd 2390 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  (
( F  |`  C ) `
 ( 0g `  R ) )  =  0 )
31 simp1l 979 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  ->  F  e.  A )
3222adantl 452 . . . . . 6  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  C  C_  ( Base `  R
) )
3332sselda 3256 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C )  ->  x  e.  ( Base `  R ) )
34333adant3 975 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  ->  x  e.  ( Base `  R ) )
35 simp3 957 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  ->  x  =/=  ( 0g `  R ) )
3619, 20, 14abvgt0 15692 . . . 4  |-  ( ( F  e.  A  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R
) )  ->  0  <  ( F `  x
) )
3731, 34, 35, 36syl3anc 1182 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  -> 
0  <  ( F `  x ) )
38 fvres 5625 . . . 4  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
39383ad2ant2 977 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  -> 
( ( F  |`  C ) `  x
)  =  ( F `
 x ) )
4037, 39breqtrrd 4130 . 2  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  -> 
0  <  ( ( F  |`  C ) `  x ) )
41 simp1l 979 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  F  e.  A )
42 simp1r 980 . . . . . 6  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  C  e.  (SubRing `  R
) )
4342, 22syl 15 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  C  C_  ( Base `  R
) )
44 simp2l 981 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  x  e.  C )
4543, 44sseldd 3257 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  x  e.  ( Base `  R ) )
46 simp3l 983 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
y  e.  C )
4743, 46sseldd 3257 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
y  e.  ( Base `  R ) )
4819, 20, 9abvmul 15693 . . . 4  |-  ( ( F  e.  A  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  ->  ( F `  ( x
( .r `  R
) y ) )  =  ( ( F `
 x )  x.  ( F `  y
) ) )
4941, 45, 47, 48syl3anc 1182 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( F `  (
x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y ) ) )
509subrgmcl 15656 . . . . 5  |-  ( ( C  e.  (SubRing `  R
)  /\  x  e.  C  /\  y  e.  C
)  ->  ( x
( .r `  R
) y )  e.  C )
5142, 44, 46, 50syl3anc 1182 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( x ( .r
`  R ) y )  e.  C )
52 fvres 5625 . . . 4  |-  ( ( x ( .r `  R ) y )  e.  C  ->  (
( F  |`  C ) `
 ( x ( .r `  R ) y ) )  =  ( F `  (
x ( .r `  R ) y ) ) )
5351, 52syl 15 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( .r `  R ) y ) )  =  ( F `
 ( x ( .r `  R ) y ) ) )
5444, 38syl 15 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  x
)  =  ( F `
 x ) )
55 fvres 5625 . . . . 5  |-  ( y  e.  C  ->  (
( F  |`  C ) `
 y )  =  ( F `  y
) )
5646, 55syl 15 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  y
)  =  ( F `
 y ) )
5754, 56oveq12d 5963 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( ( F  |`  C ) `  x
)  x.  ( ( F  |`  C ) `  y ) )  =  ( ( F `  x )  x.  ( F `  y )
) )
5849, 53, 573eqtr4d 2400 . 2  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( .r `  R ) y ) )  =  ( ( ( F  |`  C ) `
 x )  x.  ( ( F  |`  C ) `  y
) ) )
5919, 20, 6abvtri 15694 . . . 4  |-  ( ( F  e.  A  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  ->  ( F `  ( x
( +g  `  R ) y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) )
6041, 45, 47, 59syl3anc 1182 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( F `  (
x ( +g  `  R
) y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) )
616subrgacl 15655 . . . . 5  |-  ( ( C  e.  (SubRing `  R
)  /\  x  e.  C  /\  y  e.  C
)  ->  ( x
( +g  `  R ) y )  e.  C
)
6242, 44, 46, 61syl3anc 1182 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( x ( +g  `  R ) y )  e.  C )
63 fvres 5625 . . . 4  |-  ( ( x ( +g  `  R
) y )  e.  C  ->  ( ( F  |`  C ) `  ( x ( +g  `  R ) y ) )  =  ( F `
 ( x ( +g  `  R ) y ) ) )
6462, 63syl 15 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( +g  `  R
) y ) )  =  ( F `  ( x ( +g  `  R ) y ) ) )
6554, 56oveq12d 5963 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( ( F  |`  C ) `  x
)  +  ( ( F  |`  C ) `  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
6660, 64, 653brtr4d 4134 . 2  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( +g  `  R
) y ) )  <_  ( ( ( F  |`  C ) `  x )  +  ( ( F  |`  C ) `
 y ) ) )
672, 5, 8, 11, 16, 18, 24, 30, 40, 58, 66isabvd 15684 1  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F  |`  C )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521    C_ wss 3228   class class class wbr 4104    |` cres 4773   -->wf 5333   ` cfv 5337  (class class class)co 5945   RRcr 8826   0cc0 8827    + caddc 8830    x. cmul 8832    < clt 8957    <_ cle 8958   Basecbs 13245   ↾s cress 13246   +g cplusg 13305   .rcmulr 13306   0gc0g 13499  SubGrpcsubg 14714   Ringcrg 15436  SubRingcsubrg 15640  AbsValcabv 15680
This theorem is referenced by:  subrgnrg  18286  qabsabv  20890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-ico 10754  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-0g 13503  df-mnd 14466  df-grp 14588  df-minusg 14589  df-subg 14717  df-mgp 15425  df-rng 15439  df-subrg 15642  df-abv 15681
  Copyright terms: Public domain W3C validator