MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac3 Unicode version

Theorem ac3 8104
Description: Axiom of Choice using abbreviations. The logical equivalence to ax-ac 8101 can be established by chaining aceq0 7761 and aceq2 7762. A standard textbook version of AC is derived from this one in dfac2a 7772, and this version of AC is derived from the textbook version in dfac2 7773.

The following sketch will help you understand this version of the axiom. Given any set  x, the axiom says that there exists a  y that is a collection of unordered pairs, one pair for each non-empty member of  x. One entry in the pair is the member of 
x, and the other entry is some arbitrary member of that member of  x. Using the Axiom of Regularity, we can show that  y is really a set of ordered pairs, very similar to the ordered pair construction opthreg 7335. The key theorem for this (used in the proof of dfac2 7773) is preleq 7334. With this modified definition of ordered pair, it can be seen that  y is actually a choice function on the members of  x.

For example, suppose  x  =  { { 1 ,  2 } ,  { 1 ,  3 } ,  { 2 ,  3 ,  4 } }. Let us try  y  =  { { { 1 ,  2 } ,  1 } ,  { { 1 ,  3 } , 
1 } ,  { { 2 ,  3 ,  4 } ,  2 } }. For the member (of  x)  z  =  {
1 ,  2 }, the only assignment to  w and  v that satisfies the axiom is  w  =  1 and  v  =  { { 1 ,  2 } , 
1 }, so there is exactly one  w as required. We verify the other two members of  x similarly. Thus,  y satisfies the axiom. Using our modified ordered pair definition, we can say that  y corresponds to the choice function  { <. { 1 ,  2 } ,  1
>. ,  <. { 1 ,  3 } , 
1 >. ,  <. { 2 ,  3 ,  4 } ,  2 >. }. Of course other choices for  y will also satisfy the axiom, for example  y  =  { { { 1 ,  2 } ,  2 } ,  { { 1 ,  3 } , 
1 } ,  { { 2 ,  3 ,  4 } ,  4 } }. What AC tells us is that there exists at least one such  y, but it doesn't tell us which one.

(New usage is discouraged.) (Contributed by NM, 19-Jul-1996.)

Assertion
Ref Expression
ac3  |-  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)
Distinct variable group:    x, y, z, w, v

Proof of Theorem ac3
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ac2 8103 . 2  |-  E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)
2 aceq2 7762 . 2  |-  ( E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
31, 2mpbi 199 1  |-  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1531    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   E!wreu 2558   (/)c0 3468
This theorem is referenced by:  axac3OLD  8107  axac2  8109
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-ac 8101
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-v 2803  df-dif 3168  df-nul 3469
  Copyright terms: Public domain W3C validator