MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac4 Unicode version

Theorem ac4 8281
Description: Equivalent of Axiom of Choice. We do not insist that  f be a function. However, theorem ac5 8283, derived from this one, shows that this form of the axiom does imply that at least one such set  f whose existence we assert is in fact a function. Axiom of Choice of [TakeutiZaring] p. 83.

Takeuti and Zaring call this "weak choice" in contrast to "strong choice"  E. F A. z
( z  =/=  (/)  ->  ( F `  z )  e.  z ), which asserts the existence of a universal choice function but requires second-order quantification on (proper) class variable  F and thus cannot be expressed in our first-order formalization. However, it has been shown that ZF plus strong choice is a conservative extension of ZF plus weak choice. See Ulrich Felgner, "Comparison of the axioms of local and universal choice," Fundamenta Mathematica, 71, 43-62 (1971).

Weak choice can be strengthened in a different direction to choose from a collection of proper classes; see ac6s5 8297. (Contributed by NM, 21-Jul-1996.)

Assertion
Ref Expression
ac4  |-  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )
Distinct variable group:    x, z, f

Proof of Theorem ac4
StepHypRef Expression
1 dfac3 7928 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
21axaci 8274 1  |-  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1547    e. wcel 1717    =/= wne 2543   A.wral 2642   (/)c0 3564   ` cfv 5387
This theorem is referenced by:  ac4c  8282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-ac2 8269
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ac 7923
  Copyright terms: Public domain W3C validator