MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac4 Unicode version

Theorem ac4 8097
Description: Equivalent of Axiom of Choice. We do not insist that  f be a function. However, theorem ac5 8099, derived from this one, shows that this form of the axiom does imply that at least one such set  f whose existence we assert is in fact a function. Axiom of Choice of [TakeutiZaring] p. 83.

Takeuti and Zaring call this "weak choice" in contrast to "strong choice"  E. F A. z
( z  =/=  (/)  ->  ( F `  z )  e.  z ), which asserts the existence of a universal choice function but requires second-order quantification on (proper) class variable  F and thus cannot be expressed in our first-order formalization. However, it has been shown that ZF plus strong choice is a conservative extension of ZF plus weak choice. See Ulrich Felgner, "Comparison of the axioms of local and universal choice," Fundamenta Mathematica, 71, 43-62 (1971).

Weak choice can be strengthened in a different direction to choose from a collection of proper classes; see ac6s5 8113. (Contributed by NM, 21-Jul-1996.)

Assertion
Ref Expression
ac4  |-  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )
Distinct variable group:    x, z, f

Proof of Theorem ac4
StepHypRef Expression
1 dfac3 7743 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
21axaci 8090 1  |-  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )
Colors of variables: wff set class
Syntax hints:    -> wi 6   E.wex 1533    e. wcel 1688    =/= wne 2447   A.wral 2544   (/)c0 3456   ` cfv 5221
This theorem is referenced by:  ac4c  8098
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-ac2 8084
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ac 7738
  Copyright terms: Public domain W3C validator