MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac5 Unicode version

Theorem ac5 8037
Description: An Axiom of Choice equivalent: there exists a function 
f (called a choice function) with domain 
A that maps each nonempty member of the domain to an element of that member. Axiom AC of [BellMachover] p. 488. Note that the assertion that  f be a function is not necessary; see ac4 8035. (Contributed by NM, 29-Aug-1999.)
Hypothesis
Ref Expression
ac5.1  |-  A  e. 
_V
Assertion
Ref Expression
ac5  |-  E. f
( f  Fn  A  /\  A. x  e.  A  ( x  =/=  (/)  ->  (
f `  x )  e.  x ) )
Distinct variable group:    x, f, A

Proof of Theorem ac5
StepHypRef Expression
1 ac5.1 . 2  |-  A  e. 
_V
2 fneq2 5237 . . . 4  |-  ( y  =  A  ->  (
f  Fn  y  <->  f  Fn  A ) )
3 raleq 2698 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  y 
( x  =/=  (/)  ->  (
f `  x )  e.  x )  <->  A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) ) )
42, 3anbi12d 694 . . 3  |-  ( y  =  A  ->  (
( f  Fn  y  /\  A. x  e.  y  ( x  =/=  (/)  ->  (
f `  x )  e.  x ) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) ) ) )
54exbidv 2006 . 2  |-  ( y  =  A  ->  ( E. f ( f  Fn  y  /\  A. x  e.  y  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )  <->  E. f
( f  Fn  A  /\  A. x  e.  A  ( x  =/=  (/)  ->  (
f `  x )  e.  x ) ) ) )
6 dfac4 7682 . . 3  |-  (CHOICE  <->  A. y E. f ( f  Fn  y  /\  A. x  e.  y  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) ) )
76axaci 8028 . 2  |-  E. f
( f  Fn  y  /\  A. x  e.  y  ( x  =/=  (/)  ->  (
f `  x )  e.  x ) )
81, 5, 7vtocl 2789 1  |-  E. f
( f  Fn  A  /\  A. x  e.  A  ( x  =/=  (/)  ->  (
f `  x )  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   _Vcvv 2740   (/)c0 3397    Fn wfn 4633   ` cfv 4638
This theorem is referenced by:  ac5g  24406
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-ac2 8022
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ac 7676
  Copyright terms: Public domain W3C validator