MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s2 Unicode version

Theorem ac6s2 8355
Description: Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 8356. (Contributed by NM, 29-Sep-2006.)
Hypotheses
Ref Expression
ac6s.1  |-  A  e. 
_V
ac6s.2  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ac6s2  |-  ( A. x  e.  A  E. y ph  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ps ) )
Distinct variable groups:    x, f, A    x, y, f    ph, f    ps, y
Allowed substitution hints:    ph( x, y)    ps( x, f)    A( y)

Proof of Theorem ac6s2
StepHypRef Expression
1 rexv 2962 . . 3  |-  ( E. y  e.  _V  ph  <->  E. y ph )
21ralbii 2721 . 2  |-  ( A. x  e.  A  E. y  e.  _V  ph  <->  A. x  e.  A  E. y ph )
3 ac6s.1 . . . 4  |-  A  e. 
_V
4 ac6s.2 . . . 4  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
53, 4ac6s 8353 . . 3  |-  ( A. x  e.  A  E. y  e.  _V  ph  ->  E. f ( f : A --> _V  /\  A. x  e.  A  ps )
)
6 ffn 5582 . . . . 5  |-  ( f : A --> _V  ->  f  Fn  A )
76anim1i 552 . . . 4  |-  ( ( f : A --> _V  /\  A. x  e.  A  ps )  ->  ( f  Fn  A  /\  A. x  e.  A  ps )
)
87eximi 1585 . . 3  |-  ( E. f ( f : A --> _V  /\  A. x  e.  A  ps )  ->  E. f ( f  Fn  A  /\  A. x  e.  A  ps ) )
95, 8syl 16 . 2  |-  ( A. x  e.  A  E. y  e.  _V  ph  ->  E. f ( f  Fn  A  /\  A. x  e.  A  ps )
)
102, 9sylbir 205 1  |-  ( A. x  e.  A  E. y ph  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948    Fn wfn 5440   -->wf 5441   ` cfv 5445
This theorem is referenced by:  ac6s3  8356  ac6s4  8359  ptpcon  24908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-reg 7549  ax-inf2 7585  ax-ac2 8332
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-riota 6540  df-recs 6624  df-rdg 6659  df-en 7101  df-r1 7679  df-rank 7680  df-card 7815  df-ac 7986
  Copyright terms: Public domain W3C validator