MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac7g Structured version   Unicode version

Theorem ac7g 8359
Description: An Axiom of Choice equivalent similar to the Axiom of Choice (first form) of [Enderton] p. 49. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
ac7g  |-  ( R  e.  A  ->  E. f
( f  C_  R  /\  f  Fn  dom  R ) )
Distinct variable group:    R, f
Allowed substitution hint:    A( f)

Proof of Theorem ac7g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sseq2 3372 . . . 4  |-  ( x  =  R  ->  (
f  C_  x  <->  f  C_  R ) )
2 dmeq 5073 . . . . 5  |-  ( x  =  R  ->  dom  x  =  dom  R )
32fneq2d 5540 . . . 4  |-  ( x  =  R  ->  (
f  Fn  dom  x  <->  f  Fn  dom  R ) )
41, 3anbi12d 693 . . 3  |-  ( x  =  R  ->  (
( f  C_  x  /\  f  Fn  dom  x )  <->  ( f  C_  R  /\  f  Fn 
dom  R ) ) )
54exbidv 1637 . 2  |-  ( x  =  R  ->  ( E. f ( f  C_  x  /\  f  Fn  dom  x )  <->  E. f
( f  C_  R  /\  f  Fn  dom  R ) ) )
6 ac7 8358 . 2  |-  E. f
( f  C_  x  /\  f  Fn  dom  x )
75, 6vtoclg 3013 1  |-  ( R  e.  A  ->  E. f
( f  C_  R  /\  f  Fn  dom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726    C_ wss 3322   dom cdm 4881    Fn wfn 5452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-ac2 8348
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ac 8002
  Copyright terms: Public domain W3C validator