MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac9 Unicode version

Theorem ac9 8289
Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1  |-  A  e. 
_V
ac6c4.2  |-  B  e. 
_V
Assertion
Ref Expression
ac9  |-  ( A. x  e.  A  B  =/=  (/)  <->  X_ x  e.  A  B  =/=  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem ac9
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ac6c4.1 . . . 4  |-  A  e. 
_V
2 ac6c4.2 . . . 4  |-  B  e. 
_V
31, 2ac6c4 8287 . . 3  |-  ( A. x  e.  A  B  =/=  (/)  ->  E. f
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
4 n0 3573 . . . 4  |-  ( X_ x  e.  A  B  =/=  (/)  <->  E. f  f  e.  X_ x  e.  A  B )
5 vex 2895 . . . . . 6  |-  f  e. 
_V
65elixp 6998 . . . . 5  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
76exbii 1589 . . . 4  |-  ( E. f  f  e.  X_ x  e.  A  B  <->  E. f ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B
) )
84, 7bitr2i 242 . . 3  |-  ( E. f ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B
)  <->  X_ x  e.  A  B  =/=  (/) )
93, 8sylib 189 . 2  |-  ( A. x  e.  A  B  =/=  (/)  ->  X_ x  e.  A  B  =/=  (/) )
10 ixpn0 7023 . 2  |-  ( X_ x  e.  A  B  =/=  (/)  ->  A. x  e.  A  B  =/=  (/) )
119, 10impbii 181 1  |-  ( A. x  e.  A  B  =/=  (/)  <->  X_ x  e.  A  B  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wex 1547    e. wcel 1717    =/= wne 2543   A.wral 2642   _Vcvv 2892   (/)c0 3564    Fn wfn 5382   ` cfv 5387   X_cixp 6992
This theorem is referenced by:  konigthlem  8369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-ac2 8269
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-suc 4521  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-riota 6478  df-recs 6562  df-ixp 6993  df-en 7039  df-card 7752  df-ac 7923
  Copyright terms: Public domain W3C validator