MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem15 Unicode version

Theorem ackbij1lem15 7876
Description: Lemma for ackbij1 7880. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
Assertion
Ref Expression
ackbij1lem15  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  -.  ( F `  ( A  i^i  suc  c )
)  =  ( F `
 ( B  i^i  suc  c ) ) )
Distinct variable groups:    F, c, x, y    A, c, x, y    B, c, x, y

Proof of Theorem ackbij1lem15
StepHypRef Expression
1 simpr1 961 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  c  e.  om )
2 ackbij1lem3 7864 . . . . . . 7  |-  ( c  e.  om  ->  c  e.  ( ~P om  i^i  Fin ) )
31, 2syl 15 . . . . . 6  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  c  e.  ( ~P om  i^i  Fin ) )
4 simpr3 963 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  -.  c  e.  B )
5 ackbij1lem1 7862 . . . . . . . 8  |-  ( -.  c  e.  B  -> 
( B  i^i  suc  c )  =  ( B  i^i  c ) )
64, 5syl 15 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( B  i^i  suc  c )  =  ( B  i^i  c ) )
7 inss2 3403 . . . . . . . 8  |-  ( B  i^i  c )  C_  c
87a1i 10 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( B  i^i  c )  C_  c )
96, 8eqsstrd 3225 . . . . . 6  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( B  i^i  suc  c )  C_  c )
10 ackbij.f . . . . . . 7  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
1110ackbij1lem12 7873 . . . . . 6  |-  ( ( c  e.  ( ~P
om  i^i  Fin )  /\  ( B  i^i  suc  c )  C_  c
)  ->  ( F `  ( B  i^i  suc  c ) )  C_  ( F `  c ) )
123, 9, 11syl2anc 642 . . . . 5  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  ( B  i^i  suc  c ) ) 
C_  ( F `  c ) )
1310ackbij1lem10 7871 . . . . . . . . . 10  |-  F :
( ~P om  i^i  Fin ) --> om
1413ffvelrni 5680 . . . . . . . . 9  |-  ( c  e.  ( ~P om  i^i  Fin )  ->  ( F `  c )  e.  om )
15 nnon 4678 . . . . . . . . 9  |-  ( ( F `  c )  e.  om  ->  ( F `  c )  e.  On )
163, 14, 153syl 18 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  c )  e.  On )
17 onpsssuc 4626 . . . . . . . 8  |-  ( ( F `  c )  e.  On  ->  ( F `  c )  C.  suc  ( F `  c ) )
1816, 17syl 15 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  c )  C.  suc  ( F `  c ) )
1910ackbij1lem14 7875 . . . . . . . . 9  |-  ( c  e.  om  ->  ( F `  { c } )  =  suc  ( F `  c ) )
201, 19syl 15 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  { c } )  =  suc  ( F `  c ) )
2120psseq2d 3282 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  (
( F `  c
)  C.  ( F `  { c } )  <-> 
( F `  c
)  C.  suc  ( F `
 c ) ) )
2218, 21mpbird 223 . . . . . 6  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  c )  C.  ( F `  {
c } ) )
23 simpll 730 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  A  e.  ( ~P om  i^i  Fin ) )
24 inss1 3402 . . . . . . . . 9  |-  ( A  i^i  suc  c )  C_  A
2524a1i 10 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( A  i^i  suc  c )  C_  A )
2610ackbij1lem11 7872 . . . . . . . 8  |-  ( ( A  e.  ( ~P
om  i^i  Fin )  /\  ( A  i^i  suc  c )  C_  A
)  ->  ( A  i^i  suc  c )  e.  ( ~P om  i^i  Fin ) )
2723, 25, 26syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( A  i^i  suc  c )  e.  ( ~P om  i^i  Fin ) )
28 ssun1 3351 . . . . . . . 8  |-  { c }  C_  ( {
c }  u.  ( A  i^i  c ) )
29 simpr2 962 . . . . . . . . 9  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  c  e.  A )
30 ackbij1lem2 7863 . . . . . . . . 9  |-  ( c  e.  A  ->  ( A  i^i  suc  c )  =  ( { c }  u.  ( A  i^i  c ) ) )
3129, 30syl 15 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( A  i^i  suc  c )  =  ( { c }  u.  ( A  i^i  c ) ) )
3228, 31syl5sseqr 3240 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  { c }  C_  ( A  i^i  suc  c ) )
3310ackbij1lem12 7873 . . . . . . 7  |-  ( ( ( A  i^i  suc  c )  e.  ( ~P om  i^i  Fin )  /\  { c } 
C_  ( A  i^i  suc  c ) )  -> 
( F `  {
c } )  C_  ( F `  ( A  i^i  suc  c )
) )
3427, 32, 33syl2anc 642 . . . . . 6  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  { c } )  C_  ( F `  ( A  i^i  suc  c ) ) )
35 psssstr 3295 . . . . . 6  |-  ( ( ( F `  c
)  C.  ( F `  { c } )  /\  ( F `  { c } ) 
C_  ( F `  ( A  i^i  suc  c
) ) )  -> 
( F `  c
)  C.  ( F `  ( A  i^i  suc  c ) ) )
3622, 34, 35syl2anc 642 . . . . 5  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  c )  C.  ( F `  ( A  i^i  suc  c )
) )
37 sspsstr 3294 . . . . 5  |-  ( ( ( F `  ( B  i^i  suc  c )
)  C_  ( F `  c )  /\  ( F `  c )  C.  ( F `  ( A  i^i  suc  c )
) )  ->  ( F `  ( B  i^i  suc  c ) ) 
C.  ( F `  ( A  i^i  suc  c
) ) )
3812, 36, 37syl2anc 642 . . . 4  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  ( B  i^i  suc  c ) ) 
C.  ( F `  ( A  i^i  suc  c
) ) )
39 pssne 3285 . . . 4  |-  ( ( F `  ( B  i^i  suc  c )
)  C.  ( F `  ( A  i^i  suc  c ) )  -> 
( F `  ( B  i^i  suc  c )
)  =/=  ( F `
 ( A  i^i  suc  c ) ) )
4038, 39syl 15 . . 3  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  ( B  i^i  suc  c ) )  =/=  ( F `  ( A  i^i  suc  c
) ) )
4140necomd 2542 . 2  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  ( A  i^i  suc  c ) )  =/=  ( F `  ( B  i^i  suc  c
) ) )
4241neneqd 2475 1  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  -.  ( F `  ( A  i^i  suc  c )
)  =  ( F `
 ( B  i^i  suc  c ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459    u. cun 3163    i^i cin 3164    C_ wss 3165    C. wpss 3166   ~Pcpw 3638   {csn 3653   U_ciun 3921    e. cmpt 4093   Oncon0 4408   suc csuc 4410   omcom 4672    X. cxp 4703   ` cfv 5271   Fincfn 6879   cardccrd 7584
This theorem is referenced by:  ackbij1lem16  7877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-cda 7810
  Copyright terms: Public domain W3C validator