Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem2 Structured version   Unicode version

Theorem ackbij1lem2 8091
 Description: Lemma for ackbij2 8113. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem2

Proof of Theorem ackbij1lem2
StepHypRef Expression
1 df-suc 4579 . . . 4
21ineq2i 3531 . . 3
3 indi 3579 . . 3
4 uncom 3483 . . 3
52, 3, 43eqtri 2459 . 2
6 snssi 3934 . . . 4
7 sseqin2 3552 . . . 4
86, 7sylib 189 . . 3
98uneq1d 3492 . 2
105, 9syl5eq 2479 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725   cun 3310   cin 3311   wss 3312  csn 3806   csuc 4575 This theorem is referenced by:  ackbij1lem15  8104  ackbij1lem16  8105 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-un 3317  df-in 3319  df-ss 3326  df-sn 3812  df-suc 4579
 Copyright terms: Public domain W3C validator