MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem8 Unicode version

Theorem ackbij1lem8 7869
Description: Lemma for ackbij1 7880. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
Assertion
Ref Expression
ackbij1lem8  |-  ( A  e.  om  ->  ( F `  { A } )  =  (
card `  ~P A ) )
Distinct variable groups:    x, F, y    x, A, y

Proof of Theorem ackbij1lem8
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 sneq 3664 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
21fveq2d 5545 . . 3  |-  ( a  =  A  ->  ( F `  { a } )  =  ( F `  { A } ) )
3 pweq 3641 . . . 4  |-  ( a  =  A  ->  ~P a  =  ~P A
)
43fveq2d 5545 . . 3  |-  ( a  =  A  ->  ( card `  ~P a )  =  ( card `  ~P A ) )
52, 4eqeq12d 2310 . 2  |-  ( a  =  A  ->  (
( F `  {
a } )  =  ( card `  ~P a )  <->  ( F `  { A } )  =  ( card `  ~P A ) ) )
6 ackbij1lem4 7865 . . . 4  |-  ( a  e.  om  ->  { a }  e.  ( ~P
om  i^i  Fin )
)
7 ackbij.f . . . . 5  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
87ackbij1lem7 7868 . . . 4  |-  ( { a }  e.  ( ~P om  i^i  Fin )  ->  ( F `  { a } )  =  ( card `  U_ y  e.  { a }  ( { y }  X.  ~P y ) ) )
96, 8syl 15 . . 3  |-  ( a  e.  om  ->  ( F `  { a } )  =  (
card `  U_ y  e. 
{ a }  ( { y }  X.  ~P y ) ) )
10 vex 2804 . . . . . 6  |-  a  e. 
_V
11 sneq 3664 . . . . . . 7  |-  ( y  =  a  ->  { y }  =  { a } )
12 pweq 3641 . . . . . . 7  |-  ( y  =  a  ->  ~P y  =  ~P a
)
1311, 12xpeq12d 4730 . . . . . 6  |-  ( y  =  a  ->  ( { y }  X.  ~P y )  =  ( { a }  X.  ~P a ) )
1410, 13iunxsn 3997 . . . . 5  |-  U_ y  e.  { a }  ( { y }  X.  ~P y )  =  ( { a }  X.  ~P a )
1514fveq2i 5544 . . . 4  |-  ( card `  U_ y  e.  {
a }  ( { y }  X.  ~P y ) )  =  ( card `  ( { a }  X.  ~P a ) )
1610pwex 4209 . . . . . 6  |-  ~P a  e.  _V
17 xpsnen2g 6971 . . . . . 6  |-  ( ( a  e.  _V  /\  ~P a  e.  _V )  ->  ( { a }  X.  ~P a
)  ~~  ~P a
)
1810, 16, 17mp2an 653 . . . . 5  |-  ( { a }  X.  ~P a )  ~~  ~P a
19 carden2b 7616 . . . . 5  |-  ( ( { a }  X.  ~P a )  ~~  ~P a  ->  ( card `  ( { a }  X.  ~P a ) )  =  ( card `  ~P a ) )
2018, 19ax-mp 8 . . . 4  |-  ( card `  ( { a }  X.  ~P a ) )  =  ( card `  ~P a )
2115, 20eqtri 2316 . . 3  |-  ( card `  U_ y  e.  {
a }  ( { y }  X.  ~P y ) )  =  ( card `  ~P a )
229, 21syl6eq 2344 . 2  |-  ( a  e.  om  ->  ( F `  { a } )  =  (
card `  ~P a
) )
235, 22vtoclga 2862 1  |-  ( A  e.  om  ->  ( F `  { A } )  =  (
card `  ~P A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   _Vcvv 2801    i^i cin 3164   ~Pcpw 3638   {csn 3653   U_ciun 3921   class class class wbr 4039    e. cmpt 4093   omcom 4672    X. cxp 4703   ` cfv 5271    ~~ cen 6876   Fincfn 6879   cardccrd 7584
This theorem is referenced by:  ackbij1lem14  7875  ackbij1b  7881
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6138  df-2nd 6139  df-1o 6495  df-er 6676  df-en 6880  df-fin 6883  df-card 7588
  Copyright terms: Public domain W3C validator