MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem8 Structured version   Unicode version

Theorem ackbij1lem8 8109
Description: Lemma for ackbij1 8120. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
Assertion
Ref Expression
ackbij1lem8  |-  ( A  e.  om  ->  ( F `  { A } )  =  (
card `  ~P A ) )
Distinct variable groups:    x, F, y    x, A, y

Proof of Theorem ackbij1lem8
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 sneq 3827 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
21fveq2d 5734 . . 3  |-  ( a  =  A  ->  ( F `  { a } )  =  ( F `  { A } ) )
3 pweq 3804 . . . 4  |-  ( a  =  A  ->  ~P a  =  ~P A
)
43fveq2d 5734 . . 3  |-  ( a  =  A  ->  ( card `  ~P a )  =  ( card `  ~P A ) )
52, 4eqeq12d 2452 . 2  |-  ( a  =  A  ->  (
( F `  {
a } )  =  ( card `  ~P a )  <->  ( F `  { A } )  =  ( card `  ~P A ) ) )
6 ackbij1lem4 8105 . . . 4  |-  ( a  e.  om  ->  { a }  e.  ( ~P
om  i^i  Fin )
)
7 ackbij.f . . . . 5  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
87ackbij1lem7 8108 . . . 4  |-  ( { a }  e.  ( ~P om  i^i  Fin )  ->  ( F `  { a } )  =  ( card `  U_ y  e.  { a }  ( { y }  X.  ~P y ) ) )
96, 8syl 16 . . 3  |-  ( a  e.  om  ->  ( F `  { a } )  =  (
card `  U_ y  e. 
{ a }  ( { y }  X.  ~P y ) ) )
10 vex 2961 . . . . . 6  |-  a  e. 
_V
11 sneq 3827 . . . . . . 7  |-  ( y  =  a  ->  { y }  =  { a } )
12 pweq 3804 . . . . . . 7  |-  ( y  =  a  ->  ~P y  =  ~P a
)
1311, 12xpeq12d 4905 . . . . . 6  |-  ( y  =  a  ->  ( { y }  X.  ~P y )  =  ( { a }  X.  ~P a ) )
1410, 13iunxsn 4172 . . . . 5  |-  U_ y  e.  { a }  ( { y }  X.  ~P y )  =  ( { a }  X.  ~P a )
1514fveq2i 5733 . . . 4  |-  ( card `  U_ y  e.  {
a }  ( { y }  X.  ~P y ) )  =  ( card `  ( { a }  X.  ~P a ) )
1610pwex 4384 . . . . . 6  |-  ~P a  e.  _V
17 xpsnen2g 7203 . . . . . 6  |-  ( ( a  e.  _V  /\  ~P a  e.  _V )  ->  ( { a }  X.  ~P a
)  ~~  ~P a
)
1810, 16, 17mp2an 655 . . . . 5  |-  ( { a }  X.  ~P a )  ~~  ~P a
19 carden2b 7856 . . . . 5  |-  ( ( { a }  X.  ~P a )  ~~  ~P a  ->  ( card `  ( { a }  X.  ~P a ) )  =  ( card `  ~P a ) )
2018, 19ax-mp 8 . . . 4  |-  ( card `  ( { a }  X.  ~P a ) )  =  ( card `  ~P a )
2115, 20eqtri 2458 . . 3  |-  ( card `  U_ y  e.  {
a }  ( { y }  X.  ~P y ) )  =  ( card `  ~P a )
229, 21syl6eq 2486 . 2  |-  ( a  e.  om  ->  ( F `  { a } )  =  (
card `  ~P a
) )
235, 22vtoclga 3019 1  |-  ( A  e.  om  ->  ( F `  { A } )  =  (
card `  ~P A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726   _Vcvv 2958    i^i cin 3321   ~Pcpw 3801   {csn 3816   U_ciun 4095   class class class wbr 4214    e. cmpt 4268   omcom 4847    X. cxp 4878   ` cfv 5456    ~~ cen 7108   Fincfn 7111   cardccrd 7824
This theorem is referenced by:  ackbij1lem14  8115  ackbij1b  8121
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-1st 6351  df-2nd 6352  df-1o 6726  df-er 6907  df-en 7112  df-fin 7115  df-card 7828
  Copyright terms: Public domain W3C validator