MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2lem1 Unicode version

Theorem ackbij2lem1 7992
Description: Lemma for ackbij2 8016. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij2lem1  |-  ( A  e.  om  ->  ~P A  C_  ( ~P om  i^i  Fin ) )

Proof of Theorem ackbij2lem1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ordom 4768 . . . . . . 7  |-  Ord  om
2 ordelss 4511 . . . . . . 7  |-  ( ( Ord  om  /\  A  e.  om )  ->  A  C_ 
om )
31, 2mpan 651 . . . . . 6  |-  ( A  e.  om  ->  A  C_ 
om )
4 sspwb 4326 . . . . . 6  |-  ( A 
C_  om  <->  ~P A  C_  ~P om )
53, 4sylib 188 . . . . 5  |-  ( A  e.  om  ->  ~P A  C_  ~P om )
65sselda 3266 . . . 4  |-  ( ( A  e.  om  /\  a  e.  ~P A
)  ->  a  e.  ~P om )
7 nnfi 7196 . . . . 5  |-  ( A  e.  om  ->  A  e.  Fin )
8 elpwi 3722 . . . . 5  |-  ( a  e.  ~P A  -> 
a  C_  A )
9 ssfi 7226 . . . . 5  |-  ( ( A  e.  Fin  /\  a  C_  A )  -> 
a  e.  Fin )
107, 8, 9syl2an 463 . . . 4  |-  ( ( A  e.  om  /\  a  e.  ~P A
)  ->  a  e.  Fin )
11 elin 3446 . . . 4  |-  ( a  e.  ( ~P om  i^i  Fin )  <->  ( a  e.  ~P om  /\  a  e.  Fin ) )
126, 10, 11sylanbrc 645 . . 3  |-  ( ( A  e.  om  /\  a  e.  ~P A
)  ->  a  e.  ( ~P om  i^i  Fin ) )
1312ex 423 . 2  |-  ( A  e.  om  ->  (
a  e.  ~P A  ->  a  e.  ( ~P
om  i^i  Fin )
) )
1413ssrdv 3271 1  |-  ( A  e.  om  ->  ~P A  C_  ( ~P om  i^i  Fin ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1715    i^i cin 3237    C_ wss 3238   ~Pcpw 3714   Ord word 4494   omcom 4759   Fincfn 7006
This theorem is referenced by:  ackbij1b  8012  ackbij2lem2  8013
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010
  Copyright terms: Public domain W3C validator